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The steps of a quantum computation using quantum bits (qubits). The example in the diagram uses three qubits, 
so there are eight possible outcomes, each with a certain measurement probability represented by the filled part 
of the sectors. During the computation, we can change the probabilities of the outcomes by applying quantum 
computing instructions. When a measurement is performed, we get one outcome according to the encoded 
probabilities. The result is interpreted as a binary string. Multiple runs of the same computation result in a 
collection of measured outcomes.
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To change the amplitudes of a quantum state, and therefore the outcome probabilities, we use instructions 
called quantum gates. An elementary quantum gate is the basic building block of a quantum computation that 
recombines a pair of amplitudes using a specific formula. In the field of signal processing, the recombination 
of pairs of complex numbers is visually represented with “butterfly” diagrams. Quantum parallelism allows any 
number of these pair-wise operations to be performed simultaneously.
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foreword
We are on the cusp of the most disruptive revolution in modern-day computation history:
the arrival of quantum computing and its integration into quantum-centric supercom-
puting architectures. Quantum computation is an entirely new branch of computing
based on the ability to represent and manipulate data in entirely different ways.

 Quantum computations unlock vast solution spaces with unique abilities to use
quantum effects, including entanglement, to empower users with a rich set of proba-
bilistic information to extract insights from highly complex datasets. Another key dif-
ference from classical computing is that these calculations can be performed at the
same time, increasing computational power and efficiency.

 With the arrival of useful quantum computing, industries will be able to solve com-
plex problems that are unsolvable or impractical today. These new computational
capabilities will fundamentally change business workflows, discover products, and cre-
ate new business models. To unlock this value, organizations will need quantum skills
and expertise.

 Early-adopter organizations, poised to capture a disproportionate share of value,
are shaping a new quantum-aware workforce while fiercely competing to secure glob-
ally scarce quantum talent. This workforce of the future will include a broad set of
roles requiring varying degrees of quantum expertise. There is an emerging need for
quantum-aware software and application developers to work alongside researchers
and computational scientists with deep quantum theory and algorithm expertise.

 Quantum-aware developers with a solid foundational understanding and working
knowledge of quantum technologies will be able to create commercial applications
xiii



FOREWORDxiv
with unparalleled capabilities. Despite a global need for industry to accelerate and
broaden workforce development efforts, today’s educational materials and skill-building
tools are often designed for advanced mathematicians and/or scientists with a deep
understanding of quantum mechanics, creating a steep hurdle for a broader audience.

 This book, Building Quantum Software with Python: A Developer’s Guide, bridges the
learning chasm. Coauthors, Constantin Gonciulea and Charlee Stefanski, introduce
readers to the foundational building blocks for understanding quantum computation
with a conversational tone that instills confidence using multimodal reinforcements.

 Basic concepts are introduced and reintroduced throughout the guided conversa-
tion with engaging visuals and contextual tips to reinforce readers’ foundational
understanding of:

 Essential quantum computing concepts
 Fundamental algorithms and patterns
 How to apply basic concepts and run experiments on real quantum computers

Learners at all levels will establish a stronger foundation for understanding quantum
computation’s basic concepts and unique application benefits.

 Developers are encouraged to progress their learning journey from a conceptual
understanding of basic building blocks to more complex applications with hands-on
learning tools, including:

 Reusable code snippets
 Interactive exercises
 AI assistance

As a rising software engineer, new to the field of quantum computing, Charlee’s influ-
ence, based on her personal learning experience, is the perfect complement to Con-
stantin’s deep expertise in math and science as a research scientist and chief
technology officer for advanced technology, including quantum computing. 

 Together, the coauthors have established an intuitive, game-changing framework
for developers to quickly build and learn to apply quantum computing concepts in a
highly consumable, contextual, and actionable manner.

 
—HEATHER HIGGINS, Executive Partner, IBM Quantum



preface
The future of quantum computing lies not just in the hands of quantum physicists but
also in those of software developers who will integrate quantum solutions into main-
stream applications. The motivation for this book grew from experiences at two finan-
cial institutions, where it became clear that developers will be central to the creation
and adoption of practical, real-world quantum computing applications. A common
misconception is that quantum computing requires an advanced physics or mathe-
matics background. In reality, developers already possess much of the knowledge
needed to understand and work with quantum computing. The challenge is not math-
ematical complexity but connecting familiar computing concepts to quantum com-
puting’s “strange” principles. This is the core message of this book.

 We build this bridge through extensive visual representations and by focusing on
computational structures that showcase quantum computing’s unique advantages.
Wave-like structures with periodic patterns, in particular, demonstrate where quantum
approaches dramatically outperform classical ones. These periodic signals enable
“embarrassingly parallel” quantum implementations, where a maximum number of
operations occur simultaneously. The Fourier transform—a fundamental tool for
working with periodic signals—is the cornerstone of many quantum algorithms,
including Shor’s famous factorization algorithm.

 Although we don’t cover Shor’s algorithm, this book guides you toward similar
principles through encoding polynomial functions as quantum states and extracting
information from them. This capability opens the door to solving optimization problems
that appear across many domains. Along the way, you’ll master quantum computing
xv



PREFACExvi
foundations, fundamental algorithms, and implementations of various probability dis-
tributions for efficient random sampling. 

 To ensure the book’s longevity, we’ve avoided tying it to any particular quantum
computing framework. Instead, we build our own minimal framework in a few hun-
dred lines of code. This approach serves two purposes: it deepens your understanding
of quantum concepts, and it provides a practical implementation that’s interface-
compatible with IBM’s Qiskit, the most popular quantum computing framework. We
maintain this compatibility in our repositories, ensuring that the skills you learn
remain relevant as quantum computing evolves.
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about this book
Building Quantum Software with Python: A Developer’s Guide was written to help software
developers and technology professionals unlock the potential of quantum computing.
The book builds on well-known classical computing concepts at the foundation of
quantum computing while emphasizing additional distinctive characteristics that
combine into a quantum advantage (from classical to quantum computing). We teach
quantum computing using a visual, hands-on approach that requires only basic knowl-
edge of programming and math (a visual approach for developers).

 The book begins with the fundamentals of quantum computations: quantum
states, transformations, and measurement. Each of these concepts is explained visually
and with code. The second part of the book covers essential quantum algorithms.
Throughout all the chapters are implementations of basic applications. By the end of
this book, you will have a deep understanding of quantum computations and how to
design and implement quantum solutions.

Who should read this book
This book is for software developers, machine learning professionals, computer sci-
ence students, and, broadly, anyone with a background in computation or informa-
tion science. You do not need deep knowledge of quantum mechanics to develop
quantum solutions. However, you do need a basic understanding of fundamental clas-
sical computing concepts and patterns that will translate to quantum computing.
Additionally, some basic math concepts are required, including trigonometry and
xix



ABOUT THIS BOOKxx
complex numbers. We include math concept refreshers in appendix A for readers
who need them.

 This book is not linked to a specific quantum library or hardware provider. It pro-
vides an agnostic foundation to help you use any quantum library or platform. In
chapters 3 and 4, a quantum simulator called Hume is developed from scratch in
Python. Therefore, to understand the code in this book, you should have knowledge
of Python programming.

How this book is organized: A road map
This book has 12 chapters grouped into three parts. Example applications are
included throughout all the chapters. 

 The first part covers fundamentals:

 Chapter 1 provides a high-level introduction to quantum computations and dis-
cusses the advantages and challenges of quantum computing.

 Chapter 2 goes through a quantum approach to solving a real-world optimiza-
tion problem (the knapsack problem).

 Chapter 3 introduces single-qubit quantum states and introduces basic quan-
tum computing instructions called quantum gates.

 Chapter 4 covers multi-qubit systems.

Part 2 covers fundamental quantum algorithms:

 Chapter 5 covers quantum oracles.
 Chapter 6 uses oracles to implement a quantum solution to search. It covers a

very important quantum algorithm (Grover’s algorithm) and amplitude ampli-
fication.

 Chapter 7 covers the quantum Fourier transform, which is one of the sources of
quantum advantage. It is used in many quantum programs.

 Chapter 8 explores several applications of the quantum Fourier transform.
 Chapter 9 introduces another essential quantum algorithm: quantum phase

estimation. It also covers quantum counting.

Part 3 includes implementations of more complex quantum solutions, specifically
quantum optimization:

 Chapter 10 brings together concepts from the first two parts of the book to
implement an essential pattern in quantum computing: encoding functions in
quantum states.

 Chapter 11 introduces a method called Grover adaptive search that uses Gro-
ver’s algorithm to solve optimization problems. The chapter includes an imple-
mentation of a Grover optimizer.

 Chapter 12 discusses some concepts that are beyond the scope of this book but
that are natural continuations of the book’s material.



ABOUT THIS BOOK xxi
About the code
This book contains many examples of source code both in numbered listings and in
line with normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text. 

 In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, even this was not enough, and listings include line-continuation
markers (➥). Additionally, comments in the source code have often been removed
from the listings when the code is described in the text. Code annotations accompany
many of the listings, highlighting important concepts.

 The book’s companion code is on GitHub at https://github.com/learnqc/code.
The repository contains Jupyter notebooks to accompany each chapter. There is a
directory for each chapter that contains a Jupyter notebook with the code snippets
and examples in the chapter, as well as Python scripts that contain the source code
required from previous chapters. The repository also contains Jupyter notebooks with
the exercise solutions for each chapter. In addition, the repository provides resources
and examples for working with Hume, including a notebook that demonstrates how
to run examples from the book on IBM quantum computers.

 We have developed some interactive applications and tools to enhance your learn-
ing experience. You can find these tools in the GitHub repository at https://github
.com/learnqc/code_plus. This repository also contains an AI assistant that will evolve
in time.

 In addition, you can get executable snippets of code from the liveBook (online)
version of this book at https://livebook.manning.com/book/building-quantum-software
-with-python. The complete code for the examples in the book is available for download
from the Manning website at https://www.manning.com/books/building-quantum
-software-with-python.

liveBook discussion forum
Purchase of Building Quantum Software with Python includes free access to liveBook,
Manning’s online reading platform. Using liveBook’s exclusive discussion features,
you can attach comments to the book globally or to specific sections or paragraphs.
It’s a snap to make notes for yourself, ask and answer technical questions, and receive
help from the authors and other users. To access the forum, go to https://livebook
.manning.com/book/building-quantum-software-with-python/discussion. You can also
learn more about Manning’s forums and the rules of conduct at https://livebook
.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the authors can take
place. It is not a commitment to any specific amount of participation on the part of
the authors, whose contribution to the forum remains voluntary (and unpaid). We
suggest you try asking the authors some challenging questions lest their interest stray!
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The forum and the archives of previous discussions will be accessible from the pub-
lisher’s website as long as the book is in print.

Other online resources
All the code repositories related to the book can be found at https://github.com/
learnqc. More materials, including videos and tutorials, can be found at https://
learnqc.com.

https://github.com/learnqc
https://github.com/learnqc
https://learnqc.com
https://learnqc.com
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Part 1

Foundations

Traditional programming has evolved to use high-level abstractions that pro-
tect developers from the intricacies of hardware, but quantum computing still
largely involves low-level programming tasks. Today’s quantum developers must
work closely with basic quantum computing instructions, much like early classi-
cal programmers worked directly with assembly code. This is not likely to change
soon, and that is why understanding quantum computing fundamentals is cru-
cial for anyone wanting to develop quantum software.

 Don’t let this intimidate you. You won’t need complex physics or mathemat-
ics to master quantum programming. With basic programming experience and
high school trigonometry, you can build a strong foundation in quantum com-
puting. Our approach centers on hands-on learning: you’ll implement quantum
concepts in Python, building a quantum simulator that lets you experiment
directly with quantum states and operations.

 This part of the book builds your quantum computing knowledge from the
ground up. Chapter 1 introduces core quantum computing concepts and explores
their potential advantages and challenges. In chapter 2, you’ll see these concepts
in action through a practical optimization problem that demonstrates quantum
computing’s unique strengths. Chapter 3 dives into single-qubit quantum states
and gates, teaching you to implement basic quantum operations in Python. Chap-
ter 4 expands to multi-qubit systems and shows you how to prepare quantum states
corresponding to useful probability distributions for random sampling.





Advantages and
challenges of programming

quantum computers
Quantum computing opens the door to new ways to solve problems. For specific
computational tasks, quantum computers can be much faster than traditional
computers.

 For some computations, the speedup is significant. One such computation is
Fourier transforms, a topic we will cover in depth in chapters 7 and 8. Fourier trans-
forms are essential for analyzing and processing signals and data in various fields
such as engineering, physics, image processing, and telecommunications. Comput-
ing Fourier transforms more efficiently could enable high-frequency trading algo-
rithms to detect market patterns faster, reducing latency in trade execution. Also, it
can accelerate the filtering and compression of computer graphics.

This chapter covers 
 Why quantum computing is a promising tool, 

and what developers need to know to use it

 The main sources of quantum advantage

 High-level differences between quantum and 
classical computing

 An overview of the anatomy of quantum 
computations
3



4 CHAPTER 1 Advantages and challenges of programming quantum computers
 One of the best classical algorithms for computing Fourier transforms is called the
fast Fourier transform (FFT), which some consider one of the most important algo-
rithms of all time. The FFT algorithm requires exponentially more operations than its
quantum implementation, as shown in figure 1.1. 

Popular physicist Brian Cox commented on the physical nature of quantum mechan-
ics by explaining that “particles hop from place to place with a particular probability.”
The outcomes of a quantum computation are similar to the places a particle can hop
to. Each outcome has a probability of occurring. In this chapter, we will look at the
high-level components of quantum computing, how they compare to classical com-
puting, and common patterns in quantum computations.

1.1 Why quantum computing?
The public interest in quantum computing kicked off in the 1980s. Notable physi-
cists like Richard Feynman and Yuri Manin proposed that computing hardware
based on quantum processes could radically outperform classical hardware for some
types of problems.

 As hardware and manufacturing continue to advance in the quantum computing
space, we expect that the adoption of quantum computing will accelerate, and the
demand will grow for software developers who know how to develop and implement
solutions with quantum computing resources. This book focuses less on the physics of
quantum computing and more on the mathematical and programming techniques of

Figure 1.1 Comparison of the increase in computational complexity relative to the input 
size for computing (fast) Fourier transforms with classical and quantum computers
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applied quantum computing. With this knowledge, you will have a solid foundation
for applying quantum computing to real-world business and scientific problems.

 The benefit of quantum computing is often referred to as quantum advantage. Quan-
tum advantage can be any improvement compared to using a classical computer for the
same computation. Understanding the sources of quantum advantage will enable you to
assess the utility of quantum computing, classical computing, and hybrid approaches in
specific scenarios. We want our readers to build the knowledge necessary to create quan-
tum, quantum-inspired, or hybrid quantum–classical applications.

1.2 Becoming quantum ready
The developmental stage of quantum computing technology in the 2020s may be
comparable to classical computing in the late 1940s and early 1950s, but the culture
and adoption surrounding quantum computing are very different. Not everyone
believed in the potential of early computers, and not all governments and businesses
chose to invest in them at first. Contemporary culture is far quicker to adopt new tech-
nologies at industrial scales, and quantum computing for business and research is
generally well-funded and met with intrigue rather than skepticism.

 Even though the field is still in its infancy, there is already a growing demand for
developers who can build quantum-based solutions. This book will help you develop a
strong foundation in quantum computing, leading you to become “quantum ready.”
You will learn how to identify problems that can benefit from a quantum approach
and develop quantum solutions at a small scale. We start with the fundamentals of
quantum programming and algorithms. Then, we move on to implementing small-
scale examples.

 This book is designed for software developers, machine learning professionals,
computer science students, and, broadly, anyone with a background in computation
or information science. You do not need deep knowledge of quantum mechanics to
develop quantum solutions. However, you do need a basic understanding of the classi-
cal computing concepts and patterns that will translate to quantum computing. We
will cover the concepts and techniques used in quantum computations in reference to
familiar computer science concepts like arrays and binary strings. We also include
visualizations to help illustrate difficult concepts and create useful representations to
help you build your intuition for applying quantum solutions. This book is not linked
to any specific quantum library or hardware provider. It provides an agnostic founda-
tion to help you use other quantum libraries or platforms.

1.3 The superpowers of quantum computing
To speed up and scale classical computations, we can use larger hardware configura-
tions and distributed workloads. For some problems, increasing the classical computing
resources will provide a respective increase in performance. For other problems, when
the input size increases linearly, the necessary classical computing resources (such as
time and memory) increase exponentially. In contrast, for some types of problems,
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quantum computers may require only a polynomial increase in the resources needed.
This means that as the input increases, the gap in resource requirements between
classical and quantum algorithms widens significantly, which allows for more efficient
and scalable solutions to complex problems.

 Furthermore, quantum computers are expected to perform some computations
that classical computers cannot, like simulations of chemical or physical processes and
random sampling from useful probabilistic distributions. We look for computational
problems with these properties when deciding where to apply quantum computing
solutions.

 From a computing point of view, two key computational properties—quantum
parallelism and measurement—are primarily responsible for quantum advantage.
To explain these properties, we can use outcome–probability pairs. Table 1.1 shows
an example dataset that could be used in a quantum computation. The outcome–
probability pairs feature eight possible outcomes and the respective probability of
each outcome. The probabilities of all possible outcomes must add up to one.

Table 1.1 Eight outcome–probability pairs

Outcome Probability

0 0.05

1 0.11

2 0.13

3 0.02

4 0.34

5 0.17

6 0.06

7 0.12

Quantum superposition and entanglement
These quantum mechanics concepts are crucial to building quantum computers but
are not directly relevant to writing software for quantum computing. Quantum super-
position captures the notion that a quantum system can exist in multiple states. This
translates into the uncertainty of what outcome will be observed in a measurement.
Computationally, the state of a quantum system contains the probabilities of all pos-
sible outcomes, and these probabilities change instantly and simultaneously (in par-
allel, from a computing point of view). Throughout this book, we will use the term
quantum parallelism to refer to this computational benefit that arises from quantum
superposition.

Quantum entanglement refers to the fact that qubits (quantum bits) can be connected
to the extent that their state cannot be described independently of each other, and
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1.3.1 The power of quantum parallelism

Suppose that we want to swap the consecutive values corresponding to even and odd
indices (i.e., those corresponding to 0 and 1, 2 and 3, and so on) in table 1.1. For a
classical implementation, we can write out all the operations or use a for loop. Either
way, the machine-level instructions are executed sequentially. Figure 1.2 illustrates the
serial steps required to perform the swaps.

On a classical computer, the number of operations necessary will grow linearly with
the number of swaps we want to perform. If we had twice as many values to swap, we
would need twice as many operations. The increase is linear even if single-instruction
multiple-data (SIMD) processing is available, as a limited and typically small number
of entries are processed in parallel.

 If all swaps could occur simultaneously, it would speed up the computation without
interfering with the outcome—and that’s where the superpowers of quantum comput-
ing come in. The quantum implementation of the same process performs all the
swaps with one quantum computing instruction, shown in figure 1.3. This means a
quantum implementation requires only one instruction to swap as many pairs in the
system as we want. This ability to execute unlimited parallel elementary operations is
quantum parallelism. In practice, we can think of quantum parallelism as an unlim-
ited form of SIMD.

NOTE SIMD is a computing concept where one instruction can be per-
formed on multiple data points simultaneously, allowing for faster parallel
processing of operations like vector calculations.

therefore individual qubit measurements are not always independent of each other.
It is the implementation mechanism for conditional transformations. Without condi-
tional transformations, we could not implement any nontrivial computation. As such,
quantum entanglement is an enabler of quantum computing.
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Figure 1.2 A visualization of the classical implementation for swapping 
consecutive values
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Quantum parallelism is a powerful tool for achieving quantum advantage, but it can be
like painting with a broad brush. Depending on the problem, using the same instruc-
tion for many pairs of values may not be desirable. To limit and correct unwanted effects
of quantum parallelism, we need additional steps that may counter the benefit.

 Quantum parallelism seems like magic because it is different from parallelism in
classical computing. The values (probabilities) are not stored but represent internal
quantities that change when the underlying quantum system is acted on.

The butterfly computational model
Instead of swapping a pair of values, we can recombine them using a formula.
Recombining pairs of values is the general form of all elementary quantum instruc-
tions. It is also a pattern that is common in nature and other fields, from how DNA
works to how account transfers are performed. Making changes in pairs is also at the
heart of making Fourier transforms fast.

The computational building block of this pattern can be illustrated with a butterfly dia-
gram, which shows a pair of values that are recombined using a formula to update
the values with new ones. The butterfly pattern is a fundamental part of various appli-
cations, including these:

 Signal processing—Uses the FFT algorithm, which relies on the butterfly pattern
 Machine learning—Uses structured linear maps like butterfly matrices to com-

press neural networks

Single
quantum

instruction
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Figure 1.3 A visualization of the quantum implementation 
for swapping consecutive values
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1.3.2 The random nature of quantum measurement

The second key feature of quantum computing is measurement. When we measure a
quantum system, we get one of a defined set of outcomes. The outcome is nondeter-
ministic, but it does follow a certain probability distribution. If we repeat the same
computation, we may get a different measurement outcome. Depending on the prob-
lem we are trying to solve, we may need to do this a few times to get useful information
from the distribution of outcomes.

NOTE In computer science, a deterministic algorithm is one that, given the
same input, will produce the same output with each execution. A nondetermin-
istic algorithm is one that, given the same input, can produce different outputs
with each execution.

The result of a computation on a quantum computer is usually represented as a
binary string, which is a sequence of zeros and ones. We can interpret binary strings in
various ways, but it is most common to interpret them as their integer (decimal form)
value. In this chapter, we will use this interpretation for the possible outcomes of a
computation. Later chapters will cover other methods of interpretation.

 We can visualize the randomness of a measurement using a circle divided into
equal sectors, as shown in figure 1.4. Each sector corresponds to a possible measure-
ment outcome. We can think of this circle as a wheel of fortune; we spin the wheel,
and when it stops, one sector is selected.

In a quantum system, the recombination of value pairs happens simultaneously for
all affected pairs, leading to the advantage in computing Fourier transforms that we
discussed at the beginning of the chapter.

Figure 1.4 A circle divided into equal sectors, where each sector represents a possible 
outcome of a certain quantum computation
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The values of the quantum state define the probability of selecting each outcome. We
cannot directly inspect the values of a quantum state; to figure out what they are, we
must perform measurements. For example, suppose we do not know the probability
of each outcome (sector) on the circle in figure 1.4. By spinning the wheel and noting
how often we land on a sector, we can infer the probability of each outcome. Quan-
tum measurement is like sampling from a probability distribution with a tremendous
advantage over classical sampling: the samples are genuinely nondeterministic, and
the sampling is highly efficient.

 Measurement can be beneficial for many problems. In some cases, it can even
enable computations that are not possible using a classical computer, like generating
truly random numbers. It is important to understand the concepts of parallelism and
measurement to determine which problems can benefit from a quantum approach.

1.4 The anatomy of a quantum computation
To understand the anatomy of a quantum computation, we will compare and contrast
it with classical computing. Classical software programs consist of a sequence of
instructions that manipulate variables to generate outputs. Registers, or groups of bits,
can define more complex variables, such as the binary representation of an integer or
character. Programming has become more intuitive through layers of abstraction, like
high-level languages, which offer control over the type and number of variables. They
also provide more intuitive instructions to change their values. At the lowest level, all
these layers of abstraction translate to instructions that operate on bits. 

1.4.1 Computing with a single classical bit

A classical bit has one of two possible states labeled 0 and 1. It works like a toggle or
switch between two values, as shown in figure 1.5. 

In its simplest form, a single-bit computation involves changes to the bit value. When
the computation is complete, we read the value of the bit, as shown in figure 1.6. The
last written value is the result of the computation.

 As previously mentioned, the outcome of a classical computation is deterministic.
No matter how many times we repeat the same computation, the result will be the
same. This is not true for the quantum version of a single-bit computation, which can
have a different result when the same computation is repeated. 

0 1

or
Figure 1.5 A classical bit works like a 
toggle or switch between 0 and 1.
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1.4.2 Computing with a single quantum bit

A quantum bit, or qubit, is the fundamental unit of a quantum computing system. In a
quantum computer, a qubit can be encoded by a property of a particle like a photon
or an electron. In this book, we will not focus on the physical components of quantum
computers or complex mathematical models. Instead, we will compare and contrast
the applied uses of qubits and classical bits from a programming perspective. 

 Let’s first look at a simpler version of a quantum bit. Imagine that we can change
the probability of a coin landing heads or tails. Such a coin can be called a variable-bias
coin or a probabilistic bit. We cannot predict the outcome (heads or tails) of any given toss;
we can only predict the expected frequency of the possible outcomes. In figure 1.7, we
visualize changing the probability of the outcomes with a slider that moves some prob-
ability from one outcome to the other. The state of the probabilistic bit consists of the
probabilities of its two outcomes at any given moment. 

To compute using a probabilistic bit, we change the probability of the outcomes and
then measure to get one of the outcomes. The diagram in figure 1.8 shows these steps.
We are changing the probabilities of the outcomes instead of just switching between
the outcomes as we would with a classical bit. At the end of the computation, we get
one outcome, heads or tails, which we can interpret as 0 or 1. If we repeat the same
computation, we may get a different outcome.

Initial value Current value Outcome
Toggle Read

Toggle

0 01 1
1

Figure 1.6 The stages of a computation using a classical bit. In this example, the initial value 
of the bit is 0. The value is changed to 1 during the computation. When the value is read, the 
result is the last written value, 1.

H T
Figure 1.7 A probabilistic bit, or variable-bias coin, 
works like a slider that changes the probability of 
getting heads or tails.
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1.4.3 Computing with multiple quantum bits

When we perform a computation with one quantum bit, we have two possible mea-
surement outcomes: 0 and 1. Similarly, when we use multiple quantum bits, each
qubit represents one binary digit of the outcome. Therefore, the number of qubits in
a quantum system determines the number of possible outcomes of a computation. For
example, if we perform a computation with two qubits, there are four possible out-
comes: 00, 01, 10, and 11. We can refer to these outcomes with a positive integer inter-
pretation of the binary strings: in this case, 0 through 3. 

 Figure 1.9 shows a model of the steps of a specific quantum computation. We will
go over the details of this model in the following subsections. As discussed, the out-
come will consist of a binary string, with a digit for each qubit in the computation.
In the example in figure 1.9, the measured outcome is 100, which we can interpret
as the integer 4. We will use this model to understand the core concepts of quantum
computations. To understand each step, let’s take a closer look at three quantum
computing concepts: quantum state, its evolution, and its collapse through quan-
tum measurement.

Probabilities with direction
We mentioned that each possible outcome of a quantum computation has an asso-
ciated probability of occurring. However, there is more to this story. Each such prob-
ability is the squared length of a planar vector. Richard Feynman informally calls
these vectors "arrows." Formally, they are called amplitudes, and mathematically,
they are best described as complex numbers. 

The direction of amplitudes is essential in how the state of quantum systems changes
but not in the frequency of the computation outcomes they are associated with. We will
go into more detail regarding the direction of probabilities in later chapters. 

Initial bias Current bias
Change bias Toss

Change bias

Outcome

H HT T

Figure 1.8 The stages of a computation with a probabilistic bit. In this example, the initial probability 
that the outcome will be tails is 0.7. During the computation, the probability that the outcome will be 
tails is changed to 0.3. For example, each time the same computation is repeated (the coin is tossed), 
we get one outcome according to these encoded probabilities. If we perform 10 repetitions (tosses), we 
expect to see roughly 7 heads and 3 tails. The more tosses we perform, the closer we expect the 
distribution of outcomes to be to the encoded probabilities.
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THE STATE OF A QUBIT-BASED QUANTUM SYSTEM

The state of a quantum system consists of a list of values (probabilities with direction),
one for each possible outcome. Intuitively, the probabilities must add up to 1. Remem-
ber, a two-qubit system has four possible outcomes: 00, 01, 10, and 11. Thus, the state
of a two-qubit system consists of four values. 

 Typically, the default state of a quantum system, before any operations are
applied to it, is one where only the outcome with all qubits being measured as 0 is
possible. All the other outcomes have a probability of 0. In figure 1.10, we visualize
the initial state of a three-qubit system. If we measure the state, there is a 100% proba-
bility of getting the outcome 000 (or 0, if we are using the integer form of the binary
string outcomes). 

Collapsed state

Outcome

Change
probabilities

Change
probabilities

1 0 0

Measure

Initial state Running state

Figure 1.9 The steps of a quantum computation using quantum bits (qubits). The example in the diagram uses 
three qubits, so there are eight possible outcomes, each with a certain measurement probability represented by 
the filled part of the sectors. When a measurement is performed, we get one result according to the probabilities. 
The result is interpreted as a binary string.

7 = 111

6 = 1105 = 101

4 = 100

3 = 011

2 = 010 1 = 001

0 = 000

Figure 1.10 A wheel representation of a 
three-qubit quantum state in its initial state
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MEASURING THE STATE OF A QUBIT-BASED QUANTUM SYSTEM

The result of a computation using an n-qubit quantum system can be represented as
a string of 0s and 1s that is n characters long. The measurement of each qubit will
be 0 or 1. 

 Each time a computation is repeated and a measurement is performed, we get one
of the possible outcomes according to the corresponding probability. To illustrate
measuring a quantum state, we can use the wheel from the previous section, where
each sector represents an outcome. In figure 1.11, we use a rose chart (or polar area
chart) where the proportion of a sector covered by its “petal” is the probability of mea-
suring the sector’s corresponding outcome. 

NOTE The rose chart was first popularized by Florence Nightingale in 1858.
As a nurse and statistician, she used this type of diagram to concisely repre-
sent the complex statistics for the causes of mortality of British soldiers during
the Crimean War. Today, with modern visualization software like matplotlib,
this diagram is the polar version of bar charts.

Before measurement, a quantum system is said to be in a superposition of all its possible
outcomes. After measurement, the state of the system “collapses,” so the probability of
the measured outcome is 1 and the probabilities of the other possible outcomes are 0.
The measured outcome is the only information we get from a quantum computation. 

EVOLVING THE STATE OF A QUBIT-BASED QUANTUM SYSTEM

The state of a quantum bit system is modified using elementary quantum instructions
that change pairs of values. Each operation changes the values of each pair while
keeping the total probability in each pair the same. In other words, the sum of the
probabilities of the two outcomes of the pair stays the same. The target qubit of the
operation determines the pairing of the values. The binary representation of indices
in a pair differs only in the position of the target qubit. 

NOTE A complete theoretical description of quantum state evolution requires
advanced knowledge of linear algebra. Such a description considers more
general state transformations that need to be decomposed into elementary

7 = 111

6 = 1105 = 101

4 = 100

3 = 011

2 = 010 1 = 001

0 = 000

Figure 1.11 A rose chart representation of the 
probabilities associated with the outcomes of a 
three-qubit quantum system
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quantum instructions before being executed on a quantum-bit system. Because
this book focuses on building applications that can be run on quantum hard-
ware, we will generally use elementary transformations called gates that recom-
bine pairs of values (amplitudes). 

When using the wheel representation for the state of a quantum system, we can show
how the pairing is done using arcs that join the sectors or outcomes whose values are
being recombined. Figure 1.12 shows the pairing process for each of the three possi-
ble target qubits of a three-qubit system.

The arcs represent pairwise updates that happen simultaneously (in parallel). No mat-
ter how large the number of possible outcomes is, their probabilities (with direction)
are all updated simultaneously when a quantum instruction is applied. The number of
outcomes and the number of pairs doubles with the addition of a qubit. Figure 1.13
shows the pairing process for all four possible target qubits of a four-qubit system.

All quantum operations, no matter how complex, are sequences of elementary quan-
tum operations. As mentioned, elementary quantum operations consist of a target
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Figure 1.12 The three possible pair combinations of a three-qubit system. The indices differ in the last, middle, 
or first binary digit when the target qubit is 0, 1, or 2, respectively.
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Figure 1.13 The four possible pair combinations of a four-qubit system. The indices differ in the binary digit 
corresponding to the target qubit, 0, 1, 2, or 3, respectively.
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qubit and a formula for recombining two probabilities with direction. It’s like a money
transfer between two accounts: the total balance stays the same. 

1.4.4 Putting it together

The most common quantum computing model, as captured in figure 1.14, is simple:
pairs of probabilities are changed simultaneously, and computation outcomes are selected accord-
ing to these probabilities. We can summarize the core concepts required to understand a
quantum computation as follows:

 The state of a quantum computation consists of a probability with direction for
each possible outcome.

 Elementary computing instructions change pairs of probabilities with direction
in parallel.

 The probabilities determine the frequency of corresponding measurement out-
comes when the same computation is repeated.

 The measurement outcome is the only available data from a quantum com-
putation.

 Before measurement, the quantum system encoding the computation is in a
state of superposition of possible outcomes.

 After a measurement, the state of the system collapses into a state where the
measured outcome has a probability of 1 and the other outcomes have a proba-
bility of 0.

Collapsed state

Outcome

Change
probabilities

Change
probabilities

1 0 0

Measure

Initial state Running state

Figure 1.14 The steps of a quantum computation using three qubits. During the computation, we can change 
the probabilities by applying quantum computing instructions. When a measurement is performed, we get one 
outcome according to the encoded probabilities.
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1.5 Patterns of quantum computations
In this book, we will learn about quantum computing through examples. These exam-
ples will follow three main patterns, each of which utilizes the superpowers of quan-
tum computing in a specific way. Let’s look at high-level descriptions of these three
patterns. 

1.5.1 Sampling from probability distributions

Sampling from probability distributions using classical methods can be inefficient or
intractable. Quantum measurement can help with such cases. 

 Remember that the result of measuring a quantum system is one outcome. The
frequency of each outcome follows the probability distribution defined by the quan-
tum state. Repeated measurements will provide a list of samples from the associated
probability distribution. Measurement is one of the main benefits of quantum comput-
ing; it is useful for sampling from distributions that are hard to build using classical
methods. A Galton board, where many marbles fall into various bins (see figure 1.15),
is like repeated quantum measurements: each marble is like one repetition of a quan-
tum computation. 

1.5.2 Searching for specific outcomes

As we have discussed, the result of measuring a qubit system is one of many possible
outcomes, where each qubit can be measured as 0 or 1. The 0s and 1s in the outcome
can encode information that is relevant in the context of a problem of interest. This
encoding is referred to as digital encoding. For example, in a portfolio optimization sce-
nario, a binary digit of an outcome can indicate whether an investment instrument is
included in a portfolio. 

Figure 1.15 A Galton board showing physical 
pegs driving marbles into bins according to the 
binomial distribution
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 Solving a problem can be framed as a search for the outcomes that encode a solu-
tion. Quantum searches can potentially be more efficient on a quantum computer,
using Grover’s algorithm, discussed in chapter 6. 

1.5.3 Estimating the probability of specific outcomes

In other quantum computations, the answer is encoded in the probability of an out-
come or the combined probability of more outcomes. This is referred to as analog
encoding. Calculating these probabilities requires a carefully chosen and potentially
large number of repeated quantum state preparations and measurements called shots.
This can be done using the Quantum Amplitude Estimation algorithm, which we will
discuss in chapter 9. 

 As we will see, analog encoding can be converted to digital encoding (but the cost
can be prohibitive depending on the available hardware). We will explore different
ways to estimate probabilities of outcomes and the classes of problems that can benefit
from this approach. 

Summary
 To be “quantum ready,” you need to understand the sources of quantum advan-

tage and which types of problems quantum computing can solve more efficiently
than classical computing.

 Quantum parallelism and measurement can provide a quantum advantage over
classical methods.

 In a quantum computation, pairs of probabilities are changed simultaneously,
and computation outcomes are selected according to these probabilities. Quan-
tum computations have the following distinct characteristics:
– The state of a quantum computation consists of amplitudes (probabilities

with direction) for each possible outcome.
– Elementary computing instructions change pairs of amplitudes in parallel

(using the butterfly computational model/pattern).
– Quantum measurement is like sampling all possible outcomes according to

their probabilities by repeating the same computation.
 We will focus on three quantum computing patterns: sampling from probability

distributions, searching for optimal values (desired outcomes), and estimating
the probability of certain computation outcomes. 



A first look at
quantum computations:

The knapsack problem
The material in this book does not depend on any knowledge of quantum mechan-
ics or how to build a quantum computer. Programming quantum computers requires
familiarity with a few mathematical concepts, specifically binary strings, complex num-
bers, and some basic trigonometry and probabilities. We provide an overview of
these concepts for readers who are unfamiliar or want a refresher.

NOTE Elementary quantum computing instructions can be represented
with simple trigonometric expressions. The instructions used for quantum
computing are very different from those used in classical software develop-
ment. For that reason, it’s important to understand the foundational math-
ematical concepts—complex numbers and basic trigonometry—that are at
the core of quantum theory.

This chapter covers 
 Introducing a quantum solution to an optimization 

problem: the knapsack problem

 Examining the steps of a quantum computation, 
including quantum state evolution and 
measurement

 Tools for programming a quantum solution
19
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In this chapter, we will look at a quantum solution applied to a simple optimization prob-
lem. We will cover the relevant concepts as we go through the computation step by step.
We will also use this example to familiarize you with some tools used throughout the book.

2.1 A quick overview of optimization problems
Optimization problems have a simple goal: find the “optimal” value given some con-
straints. The definition of “optimal” depends on the problem—it could be the highest
value, the lowest value, or a value that meets some other criteria. To solve an optimiza-
tion problem, we typically perform several steps that get us incrementally closer to the
optimal value. 

 A common type of optimization problem called binary optimization involves a set of
variables with binary choices (like yes or no, in or out, on or off, etc.). The goal is to
find the combination of binary choices that is the optimal solution to the specific
problem. A practical limitation of solving binary optimization problems in classical
computing is that as the number of variables increases linearly, the number of possible
combinations increases exponentially. This exponential growth quickly becomes com-
putationally demanding and challenging to solve, even with the most sophisticated,
efficient classical algorithms. With this in mind, we will look at how a quantum approach
can more efficiently solve optimization problems. 

2.1.1 The knapsack problem

If you are familiar with computing algorithms, you may have encountered the knapsack
problem. It is a straightforward, fun example of a binary optimization problem. Imagine
that you have a knapsack with a defined maximum weight capacity. You also have a set of
items, each with a weight and a value (or price). The goal is to maximize the value of the
items that fit in the knapsack without exceeding its weight capacity (see figure 2.1). 

 Each item in the knapsack problem comes with a binary choice: put the item in the
knapsack or do not put the item in the knapsack. If you select an item, the weight of

Which items
should
I take?

20

kg

$850

3 kg

$1,000

4 kg

...

$1,500

8 kg

...

Figure 2.1 The knapsack problem is a binary optimization problem where the optimal solution 
is the collection of items with the highest value that does not exceed the weight limit.
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that item counts toward the total weight of the knapsack, and the value of that item
counts toward the total value. We encode this problem using binary variables, one for
each item, with a value of 1 if it is included in the knapsack or 0 if it is not. 

2.1.2 Problem setup

Let’s define the knapsack problem we are going to solve. We have a capacity of at most
4 weight units, such as kilograms or pounds. We have three items (see table 2.1) with
3, 2, and 1 units of weight, respectively. The values of the items are $2,000, $3,000, and
$1,000, respectively. To make the calculations easier, we can reduce the value of each
item by a factor of 1,000, resulting in the values 2, 3, and 1. Table 2.2 shows the value
and weight of each possible combination of items. 

NOTE For n binary variables, there are 2n possible combinations. We use a
simple example (with n = 3 variables and 23 = 8 possible combinations) to
make it easier to understand, but in real-world problems, there can be a large
number of items. For example, if there were 41 items, there would be 241

(over 1 trillion!) possible combinations.

Table 2.1 The items, weights, and values for the example knapsack problem

Item label Value Weight

0 2 ($2,000) 3

1 3 ($3,000) 2

2 1 ($1,000) 1

Exercise 2.1
Can you work out the optimal solution in your head?

Table 2.2 A table with each possible selection of items and the corresponding value and weight

Item selection Value Weight

None 0 0

Item 0 2 3

Item 1 3 2

Items 0 and 1 5 5

Item 2 1 1

Items 0 and 2 3 4

Items 1 and 2 4 3

Items 0, 1, and 2 6 6
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2.2 The steps of a quantum computation
In chapter 1, we used figure 2.2 to visualize the steps of executing a quantum compu-
tation. It is important to understand that each execution (or run) of a quantum com-
putation results in one of potentially many possible outcomes. Multiple runs of the
same computation result in a collection of measured outcomes. In figure 2.2, we show
an example distribution of measured outcomes from multiple runs of a computation. 

What exactly is a run of a quantum computation? Each run consists of three main parts:

1 The system of qubits used to run the program is set up in an initial state.
2 We change the state of the system using a specific set of instructions.
3 We perform a system measurement that collapses the state and produces one of

the possible outcomes.

We repeat these steps or run the computation as many times as required to obtain the
information we need. The goal for many quantum computations is to increase the
probability of measuring desired outcomes.

2.2.1 Outcomes as binary strings

The only information we can get from a quantum computation run is a measurement
outcome. A measurement outcome of a quantum computation is represented as a
binary string: a sequence of 0s and 1s. Each digit in the binary string corresponds to a
qubit in the quantum system running the computation. In this book, we assume that all
qubits are measured at the end of a computation unless specified otherwise. 

Initial state Collapsed state

MeasureChange
probabilities

Change
probabilities

Running state

Outcome

1 0 0

Counts

Figure 2.2 The steps of a quantum computation using quantum bits (qubits)
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DEFINITION Quantum systems used for computing are typically composed of
quantum bits or qubits.

In this book, when we refer to a quantum system, we are referring to a qubit system.
There are several types of quantum computers, each of which uses different technolo-
gies to physically implement qubits. We will not discuss quantum computing hardware
in this book beyond the concepts you need to understand to write software for them.

 In figure 2.3, we use empty boxes to represent the binary digits. Each time we run
a quantum program, we get one outcome.

Representing outcomes with binary strings
There are 2n binary strings with length n, where n > 0 is the number of digits. Each
qubit in a quantum system corresponds to one binary digit in the measurement out-
come. Therefore, a quantum system with n qubits has 2n possible outcomes.

As mentioned in chapter 1, we often talk about measurement outcomes using deci-
mal form (base 10 integers). The following tables show the decimal (base 10) values
of binary strings of lengths one, two, and three.

Quantum
program

Run

Outcome

Figure 2.3 The outcome of 
running a quantum program 
is a binary string

Binary form Decimal form

0

1

0

1

One-qubit outcomes Two-qubit outcomes

Binary form Decimal form

00

01

0

1

10

11

2

3

Three-qubit outcomes

Binary form Decimal form

000

001

0

1

010

011

2

3

100

101

110

111

4

5

6

7

The decimal (base 10) value of binary strings of length one, two, and three
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Similar to a classical computer, we can use groups of qubits, called quantum registers, to
represent different variables. In the knapsack problem example, we will use three reg-
isters to represent three variables: item selection, selection value, and selection
weight. Figure 2.4 shows these three registers. The size of the registers for each vari-
able is determined by how large the variables need to be in a specific problem (num-
ber of items, weights, and values). 

2.2.2 Quantum state and probabilities

As mentioned in chapter 1, each possible outcome of a quantum computation has a
certain probability of occurring. A quantum system’s state, called a quantum state, con-
sists of a value for each possible outcome, called an amplitude (or probability amplitude),
which determines the outcome probability. Remember that an amplitude is a two-
dimensional entity that has a magnitude (length) and direction. The probability of
each outcome is equal to the squared magnitude of its associated amplitude. 

(continued)

If you are unfamiliar with binary strings and converting between binary and decimal
values, check out the review in appendix A.

Exercise 2.2
What can be said about integers whose binary representation ends in 0?

Why are probabilities the squares of magnitudes?
This is one of the features of quantum mechanics that is accepted in practice without
proof. For this reason, these features are called postulates. Once formulated, the
postulates are not hard to understand and represent in code like we do in this book.
In different versions of quantum theory, some postulates may be replaced by others,
and the old postulates can be derived from new ones. A full discussion of postulates
is beyond the scope of this book. 

The postulates of quantum mechanics were derived after a long process of trial
and (mostly) error, which involved a considerable amount of guessing and fum-
bling by the originators of the theory.

—Michael A. Nielsen and Isaac L. Chuang

Selection WeightValue

Figure 2.4 Three registers encoding an item 
selection, its total value, and its total weight 
for solving the knapsack problem
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Complex numbers are the most convenient way to represent amplitudes. We will look
closely at amplitudes in the next chapter.

 In chapter 1, we used a wheel with sectors to represent the state of a quantum sys-
tem. The wheel in figure 2.5 represents the state of a three-qubit system, where each
side is an outcome and the shaded parts represent the probabilities.

The wheel representation is an intuitive way to visualize the setup of a quantum com-
putation, but in many cases, it is useful to present additional information. We will
“unwrap” the wheel into a table, where we can add columns to include more informa-
tion. In this book, we will use table visualizations called state tables to visualize quantum
states. In this chapter, we will use simplified state tables. In the next chapter, we will
add more columns to the tables. 

 Figure 2.6 is the corresponding table visualization of the state shown in figure 2.5.
Similar to the sectors of the wheel, the probability is represented by the length of the
bar relative to the total length of the column.

7

65

4

3

2 1

0

Figure 2.5 A rose chart representation of the 
probabilities associated with the outcomes of 
a three-qubit quantum system

Outcome Binary Probability bar

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111
Figure 2.6 The possible outcomes of a three-qubit 
system and the corresponding probabilities 
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Deep dive: Ket notation
Ket notation is the formal mathematical expression of quantum states. We will not
rely on this notation, but we will include explanations and examples throughout the
book for interested readers.

A ket, |ψ ⟩, denotes a column vector of complex numbers representing a quantum
state. Consider a quantum state with n = 3 qubits. The state will consist of 2n = 8
amplitudes, each corresponding to a possible outcome. We can express the state
with ket notation:

where zi for 0 ≤ i < 2n = 8 is a complex number.

We can also express this state in terms of the standard (computational) basis:

The basis vector with all zero entries except a single 1 in the kth row is denoted by
|k⟩, also representing the kth outcome. Using this notation, we can express the same
quantum state with

Depending on the context, we can also use the binary expansion of outcomes:
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To change the amplitudes of a quantum state and therefore the outcome probabili-
ties, we use instructions called quantum gates. An elementary quantum gate is the basic
building block of a quantum computation that recombines a pair of amplitudes using
a specific formula. In the field of signal processing, the combination of a pair of com-
plex numbers is visually represented with a “butterfly” diagram like the one shown in
figure 2.7. We will look at the common elementary gates and their formulas in the
next chapter. 

To solve optimization problems using a quantum computation, the goal is to increase
the probability of the outcomes that satisfy the problem criteria. In the case of the
knapsack problem, this means increasing the probability of the optimal item configu-
ration with the highest value and weight not exceeding the allowed maximum. 

2.3 A quantum solution to the knapsack problem
Let’s get into more detail about how to implement a quantum program to solve the
knapsack problem. Don’t worry; you are not expected to understand all the details of
the implementation at this point. By the end of the book, you will be able to imple-
ment the solution to the problem yourself and much more. 

2.3.1 Encoding the problem

Returning to our three quantum registers shown in figure 2.8, we can set up our knap-
sack problem. The selection register will have three qubits, one for each item (see fig-
ure 2.9). If an item is included in the selection, the corresponding digit in the
outcome will have a value of 1. If an item is not included, the corresponding digit will
have a value of 0. 

For a system with n qubits, we typically use a sum notation:

Figure 2.7 An elementary quantum instruction (gate) recombines pairs of 
amplitudes. The two inputs, a and b, are recombined according to a formula 
to compute two outputs, creating a shape that resembles butterfly wings.

Selection WeightValue

Figure 2.8 Three registers encoding an item 
selection, its total value, and its total weight for 
solving the knapsack problem
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We will use two registers to encode the corresponding value and weight of each selec-
tion. Table 2.3 shows the value and weight of each possible selection of items.

We can express the value and weight of each selection using linear functions of binary
variables:

where x0, x1, and x2 are the binary digits of the selection register (indexed from right
to left, as shown in figure 2.9). For example, if the selection outcome is 110, then x0 = 0,
x1 = 1, and x2 = 2. We can find the weight and value of this selection using the func-
tions we just defined:

This representation is useful for encoding the weight and value of each selection in a
quantum state. The method of encoding is the subject of a later chapter. 

Table 2.3 Each possible selection of items and the corresponding value and weight

Selection Value Weight

000 0 0

001 2 3

010 3 2

011 5 5

100 1 1

101 3 4

110 4 3

111 6 6

Selection

Item 2 Item 1 Item 0

Figure 2.9 The register for encoding item selections. 
Each qubit corresponds to an item.



292.3 A quantum solution to the knapsack problem
2.3.2 Knapsack problem solution

To find the solution to our example knapsack problem, we will use the solve_knapsack
function from the chapter’s companion code. We are running this function using our
Python simulator, which we will discuss in more detail in the next section. 

NOTE A Jupyter notebook with the complete implementation of the example
from this chapter can be found in the src/ch02 folder in the source code on
the book’s website (www.manning.com/books/building-quantum-software
-with-python) and in the book’s companion repository (https://github.com/
learnqc/code).

This function has three parameters: a list of item values, a list of item weights, and the
maximum weight of selections we are looking for. We define the inputs for our exam-
ple as follows:

values = [2, 3, 1]
weights = [3, 2, 1]
max_weight = 4

Let’s perform one function call with these inputs:

solve_knapsack(values, weights, max_weight)

Linear functions of binary variables
Consider the case where the inputs of a function are a list of n binary variables (0 or 1)
for a positive integer n. A linear function of binary variables is a mathematical expres-
sion of the form

where x0, …, xn–1 are either 0 or 1 and c, c0, …, cn–1 are constant real numbers.

For example, we can express the function y = x + 3 as a linear function of n = 2 binary
variables

where c = 3, c0 = 1, and c1 = 2.

https://github.com/learnqc/code
https://github.com/learnqc/code
https://github.com/learnqc/code
http://www.manning.com/books/building-quantum-software-with-python
http://www.manning.com/books/building-quantum-software-with-python
http://www.manning.com/books/building-quantum-software-with-python
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The following output shows the optimal selection that satisfies the given weight
constraint:

Optimal selection consists of items 1, 2. The combined value is 4, and the 
combined weight is 3.

Let’s go into more detail about what this function does. The solution relies on two
important patterns in quantum computing:

 Efficiently recognizing nonnegative outcomes within a certain register
 Increasing the probability of measuring desired outcomes

The first pattern refers to having an efficient oracle and the second to the amplitude
amplification algorithm, which uses an oracle in its implementation. The combination
of these two patterns, discussed in later chapters, allows us to increase the probability
of measuring selections that have a minimum value and a maximum weight through
quantum measurement. 

 The implementation starts by looking for selections with the given maximum
weight parameter, 4, and a minimum value defined as the highest value of a single
item: in this case, item 1, with a value of 3. We use this as the starting minimum value
because we know that the optimal outcome should have the same or greater value
than putting only the highest-value item in the knapsack.

NOTE If you already solved the problem in your head, you know the most
optimal outcome has a greater value than item 1 by itself. We are simply using
the value of item 1 to set a minimum value for the parameters of the compu-
tation. Doing this does not indicate or dictate that item 1 must be included in
the most optimal outcome, only that any outcome with lesser value than item
1 can be ignored.

The probability of selections that meet these criteria is increased. In figure 2.10, we
can see that these outcomes have a higher probability than the outcomes that do not
meet these requirements.

Selection Value Weight Probability Probability bar

000 0 0 0.03

001 2 3 0.03

010 3 2 0.28

011 5 5 0.03

100 1 1 0.03

101 3 4 0.28

110 4 3 0.28

111 6 6 0.03

Figure 2.10 The probability of outcomes when 
looking for selections with a maximum weight 
of 4 and a minimum value of 3
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Next, the function simulates one or more measurements. There is an equal probabil-
ity of getting any of the three selections identified in this step: it is possible that we will
get the best selection, but it is equally likely that we will get one of the other non-opti-
mal outcomes. The most frequent selection and its weight and value are recorded.

 Assume that the most frequent measurement outcome is 101 (selection of the first
and third items). Next, we want to see if we can find a solution with a higher value. We
can increase the minimum value from 3 to 4 and perform the same operations to
search for the selections with this minimum value (and a maximum weight of 4).

 As shown in figure 2.11, only one selection is identified, and the probability of that
outcome is increased. Once again, the function simulates a measurement of this state.
We get the selection outcome 110 (items 1 and 2).

Next, we will try to increase the minimum value again, this time to 5. However, the
function will not yield a solution that meets this requirement, so the search is done.
The best solution identified in the previous steps is returned. 

2.4 Tools for programming a quantum solution
In the ecosystem of quantum computing software packages, Qiskit, Cirq, and Penny-
Lane are among the most popular as of this writing (2025). These packages enable
you to compile and run code on quantum computers (when and if one is available to
you), and they often include a simulator for testing code before committing to using
quantum computing time. 

 Quantum computing programmers spend most of their time using simulators; sim-
ulators are crucial to the process of becoming “quantum ready.” In chapters 3 and 4,
we will go through the step-by-step process of implementing a simulator. Writing a
simulator from scratch requires only a couple of hundred lines of code and is a great
way to familiarize yourself with foundational quantum computing concepts.

 The Python simulator we use in this book, called Hume, is designed for learning,
flexibility, and efficiency. The building blocks of Hume covered in this book can easily

Selection Value Weight Probability Probability bar

000 0 0 0.03

001 2 3 0.03

010 3 2 0.03

011 5 5 0.03

100 1 1 0.03

101 3 4 0.03

110 4 3 0.78

111 6 6 0.03

Figure 2.11 The selection register outcome 
probabilities after looking for selections with a 
maximum weight of 4 and a minimum value of 4
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be translated into other languages. The book is meant to provide the necessary knowl-
edge for organizations to adopt quantum computing and build quantum computing
platforms; we believe this requires tools that are flexible and that can evolve. 

NOTE A complete implementation of Hume can be found in the source code
on the book’s website (www.manning.com/books/building-quantum-software
-with-python) and in the book’s companion repository (https://github.com/
learnqc/code). A JavaScript version of Hume can be found at https://github
.com/learnqc/code_js.

The diagram in figure 2.12 shows the general structure of the quantum concepts we
will cover in the book and implement in the simulator.

The syntax for writing quantum circuits in Hume closely matches that of Qiskit. This is
intentional, as Qiskit is among the most popular quantum computing SDKs. As part of
Hume, we created tools to seamlessly convert to Qiskit so that we can run on IBM
quantum backends, both simulators and real quantum computers. For example, to
convert a circuit to a Qiskit circuit object, we use the to_qiskit function:

qiskit_circuit = to_qiskit(hume_circuit)

The function returns a Qiskit QuantumCircuit instance. We also include a function to
run a circuit using Qiskit’s state vector simulator. These tools also allow you to run
code written in Hume on real quantum hardware. 

(Probability) Amplitudes

Quantum gates

Outcomes

Quantum state

Quantum transformations

Quantum circuit

Quantum measurement

Quantum algorithms Figure 2.12 Map of quantum 
concepts implemented in Hume

http://www.manning.com/books/building-quantum-software-with-python
http://www.manning.com/books/building-quantum-software-with-python
http://www.manning.com/books/building-quantum-software-with-python
https://github.com/learnqc/code
https://github.com/learnqc/code
https://github.com/learnqc/code
https://github.com/learnqc/code_js
https://github.com/learnqc/code_js
https://github.com/learnqc/code_js
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Summary
 Binary optimization problems are good candidates for efficient quantum com-

puting solutions.
 The output of one execution (run) of a quantum computation can be inter-

preted as a binary string, with one digit for each qubit in the system.
 The state of a quantum system (quantum state) consists of a value called an

amplitude for each possible outcome. The corresponding amplitude deter-
mines the probability of an outcome.

 We change the amplitudes, and therefore the probabilities, using elementary
quantum instructions called quantum gates.

 To solve several types of problems—including optimization problems—using
quantum computations, the goal is to increase the probability of desired out-
comes. We do this using a process called amplitude amplification. 



Single-qubit
states and gates
In this chapter, we look at the state of a single-qubit system with programmatic and
visual representations. We also cover how a qubit can be used as a computational
tool. In the next chapter, we will generalize these concepts to any number of qubits.

 The simplest representation of a quantum state in code is a list of complex num-
bers. This list is often called a state vector. We will use state tables like the ones intro-
duced in chapter 2 to visualize quantum states. 

 This chapter also introduces the basics of applying programming instructions,
called quantum gates, to a single-qubit system and combining them into a quantum
circuit. We will look at some ways to visualize gates and circuits. Finally, we will exam-
ine a few simple single-qubit circuits with practical applications. Figure 3.1 shows
the structure of the concepts introduced in this chapter. 

This chapter covers
 Single-qubit quantum states and introducing 

state tables

 Basic single-qubit quantum gates and single-qubit 
quantum circuits

 Simulating single-qubit quantum systems in 
Python
34
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NOTE The source code, examples, and exercise answers can be found on
the book’s website (www.manning.com/books/building-quantum-software
-with-python) and in the book’s companion repository (https://github.com/
learnqc/code).

3.1 Single-qubit state: A pair of complex numbers
A single-qubit quantum system has two possible outcomes, denoted by 0 and 1. Its
state consists of a pair of amplitudes, one for each outcome. We will look at the prop-
erties of a single-qubit state in detail using both visualizations and code. 

3.1.1 Visualizing single-qubit states with tables

Throughout this book, we use state tables to describe and visualize quantum states.
The columns in a state table contain relevant properties of a quantum state. 

 Each qubit in a quantum system corresponds to a binary digit in the measurement
outcomes. For a single-qubit system, we need only one binary digit to represent its out-
comes. For single-digit outcomes, the decimal and binary expressions are the same, as
shown in figure 3.2, but this will not be the case for larger systems.

Single-qubit gates
(X, Y , Z, H, P, RX, RY, RZ)

Single-qubit transformations

Outcomes

Single-qubit state

(Probability) Amplitudes

Single-qubit circuits

Single-qubit measurement

Single-qubit applications
(normal and Bernoulli distributions, number encoding)

Single-qubit state visualizations
(clock, state table)

Figure 3.1 A dependency diagram of concepts introduced in this chapter

Outcome Binary

0 0

1 1
Figure 3.2 A single-qubit state has 
two possible outcomes.

http://www.manning.com/books/building-quantum-software-with-python
http://www.manning.com/books/building-quantum-software-with-python
http://www.manning.com/books/building-quantum-software-with-python
https://github.com/learnqc/code
https://github.com/learnqc/code
https://github.com/learnqc/code
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As mentioned, the state consists of values called amplitudes corresponding to each
computational outcome. Amplitudes can be expressed as complex numbers. Figure 3.3
shows a state table with example amplitudes; in this case, the complex numbers are
shown in algebraic form. 

NOTE The algebraic form of a complex number z is z = x + iy. In this form, x
and y are real numbers, and i is the imaginary unit, a number with the special
property that its square is –1, i2 = –1. If you are unfamiliar with complex num-
bers or need a refresher, please refer to appendix A. 

It is also useful to include in the state table columns for the magnitude and direction
of each amplitude. The directions of amplitudes play an important role in quantum
computations and will be explored in more detail in future chapters.

NOTE Given a complex number z = x + iy, we can find its magnitude |z | with

the formula  and its direction θ using trigonometric expres-
sions. Conveniently, the Python math library function atan2(y, x) takes
care of all the necessary computational details and gives the direction in
radians. If you are unfamiliar with these concepts, you can find more details
in appendix A. 

The example amplitudes in figure 3.3 have magnitudes  and :

Remember that the squared magnitudes of the amplitudes in a quantum state must
add up to 1, so each magnitude will be at most 1. This makes it easy to illustrate the
values in a state table with an amplitude bar, where the length of the bar is proportional
to the length of its cell (e.g., a magnitude of 0.5 would be a bar that covers half of
the cell). The color of the bar corresponds to the amplitude’s direction. In figure 3.4,
we add amplitude bars to the state table to visualize the magnitude and direction of
the amplitudes. 

 
 

Outcome Binary Amplitude

0 0 −0.34 + 0.43i

1 1 0.68 + 0.49i

Figure 3.3 A single-qubit state with two 
example amplitudes, each corresponding 
to a possible outcome
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Next, we can add a column with the probability of each outcome and one containing
a bar whose length reflects the probability. The probability of an outcome is the
square of the magnitude of its amplitude. Figure 3.5 shows the probabilities as numer-
ical values and colored bars.

NOTE The probability of an outcome with amplitude z is p = |z |2.

Amplitudes as colored bars
As mentioned, amplitudes have a magnitude and direction. We know that each ampli-
tude of a quantum state will have a magnitude less than or equal to 1. So, we can
plot amplitudes within the unit circle. The left side of the following figure shows a
graphical representation of the two amplitudes of this state inside a unit circle. We
use the color wheel on the right side of the figure to find the corresponding hue of
each amplitude direction to color our amplitude bars.

A “clock” representation of a quantum state and the unit color wheel

Outcome Binary Amplitude Direction Magnitude Amplitude bar

0 0 −0.34 + 0.43i 128.6° 0.55

1 1 0.68 + 0.49i 36.0° 0.84

Figure 3.4 A single-qubit state has two amplitudes. Each amplitude has a 
magnitude and direction.

0 1

Outcome Binary Amplitude Direction Magnitude Amplitude bar Probability Probability bar

0 0 −0.34 + 0.43i 128.6° 0.55 0.30

1 1 0.68 + 0.49i 36.0° 0.84 0.70

Figure 3.5 The probability of each outcome is the squared magnitude of the corresponding amplitude.
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Figure 3.5 is an example of an “expanded” state table for a single-qubit state. Depend-
ing on the need, we will use a more compact or expanded version of the state table. 

3.1.2 The general form of a single-qubit state

A single-qubit state is captured by two amplitudes whose squared magnitudes add up
to 1. We denote the amplitude corresponding to outcome 0 by z0 and the amplitude
corresponding to outcome 1 by z1. If the probability of outcome 0 is p, then the proba-
bility of outcome 1 is 1 – p. The directions θ0 and θ1 can be any two angles. 

 For a single-qubit state, if we know the probability p of the outcome 0 and the
directions of the amplitudes (θ0 and θ1), we can derive the corresponding amplitudes.
Let’s start with the general form single-qubit state in figure 3.6.

We can find the magnitudes of the amplitudes by taking the square roots of the cor-

responding probabilities:  and . Then we can express the amplitudes in
terms of their magnitude and direction using the polar form of complex numbers. 

Now we can add columns to the state table for the amplitudes and their magnitudes,
as shown in figure 3.7. We can also denote the probabilities of outcomes 0 and 1 with
p0 and p1, respectively (see figure 3.8). This is useful when we want the notation to
reflect the outcome the probability corresponds to.

Polar form of complex numbers
Given the magnitude r and direction θ of a complex number z = x + iy, we can express
the real and imaginary parts with these formulas:

This leads to the polar form of z:

Outcome Direction Probability

Figure 3.6 The general form of 
a single-qubit state
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3.1.3 Programmatically encoding single-qubit states with lists

A single-qubit quantum state can be expressed as a list of two amplitudes, where the
index of an amplitude is the corresponding outcome. Let’s start by encoding the
example single-qubit state from the previous section. Note that Python represents the
imaginary unit, i, in a complex number with the symbol j:

state = [0.2958+0.51235j, -0.40311+0.69821j]  

Ket notation
As mentioned in chapter 2, ket notation is often used in the field of quantum com-
puting to express quantum states. A single-qubit state can be expressed in terms of
the standard (computational) basis

where z0 and z1 are complex numbers satisfying

Exercise 3.1
What directions correspond to amplitudes that are real numbers?

Outcome Amplitude Direction Magnitude Probability

Figure 3.7 The general form of a single-qubit state with amplitudes in polar form where 
the probabilities of outcome 0 is p and therefore the probability of outcome 1 is 1 – p.

Outcome Amplitude Direction Magnitude Probability

Figure 3.8 The general form of a single-qubit state with amplitudes in polar form where 
the probability of outcomes 0 and 1 are denoted by p0 and p1

In Python, we use j for 
the imaginary unit.
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The index of each amplitude is the corresponding outcome. Let’s look at the item at
index 0:

print(state[0])

The output is the amplitude corresponding to outcome 0:

(0.2958+0.51235j)

Let’s look at some other single-qubit quantum states:

from math import sqrt

state1 = [1, 0]

state2 = [0, 1]

state3 = [sqrt(1/2), sqrt(1/2)]

state4 = [sqrt(0.3), sqrt(0.7)]

These example states have positive real numbers as amplitudes (the imaginary part is 0).
If an amplitude is a positive real number, its direction must be a 0 angle.

 For example, let’s look at the real and imaginary parts of the amplitude corre-
sponding to outcome 0 in the following example state:

state = [1, 0]
print(state[0].real, state[0].imag)  

The output is

1 0

To verify that the previous examples are valid single-qubit quantum states, we can
check that the sum of the squared magnitudes is 1. In Python, you can find the magni-
tude of a complex number with the abs function. We can use this list comprehension
to get the sum of the squared magnitudes:

state = [1, 0]
assert sum([abs(k)**2 for k in state]) == 1

state1 = [sqrt(0.3), sqrt(0.7)]
assert sum([abs(k)**2 for k in state1]) == 1

The following state shows an example of an amplitude that is a negative real number,
whose direction is 180°, or π radians:

state = [sqrt(0.3), -sqrt(0.7)]

We can use the built-in 
attributes .real and .imag to 
get the real and imaginary 
parts of a complex number.
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Note that all odd integer multiples of 180° (or π if radians are used) are valid repre-
sentations for the same direction.

 As mentioned, in Python, we can find the direction of a complex number in radi-
ans using the atan2 function from the math library:

from math import atan2

state = [sqrt(0.3), -sqrt(0.7)]
direction = atan2(state[1].imag, state[1].real)  
print(direction)

The output is the direction in radians:

3.141592653589793

We can convert from radians to degrees with the following expression:

from math import pi

direction * (180/pi)

The output is the direction in degrees:

180.0

The following is a state with amplitude directions π/7 and π/5 radians:

from math import cos, sin

state = [sqrt(0.3) * (cos(5 * pi / 7) + 1j * sin(5 * pi / 7)),
         sqrt(0.7) * (cos(pi / 5) + 1j * sin(pi / 5))]  

print(state)

The output is

[(-0.34149942885245477+0.42822673911544473j),
 (0.6768721799802616+0.4917764247793589j)]

Although this list is an efficient, compact representation, it is useful to explicitly
include each index (which is the same as the outcome in this representation):

table = [[k, state[k]] for k in range(len(state))]
for row in table:
    print(row)

The output is

[0, (-0.3414994288524547+0.42822673911544473j)]
[1, (0.6768721799802616+0.4917764247793589j)]

Remember, the direction 
(in radians) is atan2(y, x). 
We can use .real and .imag 
to get x and y, respectively.

Remember, in Python, j is used to represent
the imaginary unit in a complex number.
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To make the table more readable, we can use fewer decimal places for the real and
imaginary parts of the amplitudes. For example, let’s format them using five digits
after the decimal point:

formatted_table = [
    [
        round(x.real, 5) + 1j * round(x.imag, 5) if isinstance(x, complex) else x
        for x in table[k]
    ] 
    for k in range(len(table))
]

for row in formatted_table:
    print(row)

The output is

[0, (-0.3415+0.42823j)]
[1, (0.67687+0.49178j)]

Next, we will add the other properties we want in the state table: direction, magni-
tude, and probability. We can get the magnitude of a complex number using the built-
in Python function abs:

abs(state[0])

To get the probability, we square the magnitude:

abs(state[0])**2

We can put everything together to get all the values in the state table shown in figure 3.9.

expanded_table = [
    [
        k,
        state[k],
        atan2(state[k].imag, state[k].real) * (180 / pi),
        abs(state[k]),
        abs(state[k]) ** 2
    ] 
    for k in range(len(state))
]

formatted_expanded_table = [
    [
        round(x, 5) if isinstance(x, float)
        else round(x.real, 5) + 1j * round(x.imag, 5) if isinstance(x, complex)
        else x
        for x in expanded_table[k]
    ]
    for k in range(len(expanded_table))
]
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for row in formatted_expanded_table:
    print(row)

The output is a row for each outcome with the corresponding amplitude, direction,
magnitude, and probability:

[0, (-0.3415+0.42823j), 128.57143, 0.54772, 0.3]
[1, (0.67687+0.49178j), 36.0, 0.83666, 0.7]

3.1.4 Implementing a single-qubit quantum computing simulator 
in Python

The diagram in figure 3.10 illustrates the components of a quantum computation
using a single-qubit system. We can simulate each part of a quantum computation
using a classical computer. Writing a quantum computing simulator is not as difficult
as you may think; it requires only a couple of hundred lines of code in any program-
ming language. We are going to build the components of a quantum simulator from
scratch using Python. We will use a functional programming approach for our simula-
tor and wrap it in an object-oriented style that reflects the syntax used by Qiskit, one of
the most popular quantum computing frameworks. This way, the code examples can
be run with our simulator or Qiskit. Our approach is meant to provide a blueprint for
implementing a simulator in the programming language of your choice. 

Outcome Binary Amplitude Direction Magnitude Amplitude bar Probability Probability bar

0 0 −0.34 + 0.43i 128.6° 0.55 0.30

1 1 0.68 + 0.49i 36.0° 0.84 0.70

Figure 3.9 The expanded state table for the example state encoded in Python

Outcome

MeasureChange
probabilities

Change

probabilities
1

Initial state Collapsed stateRunning state

Figure 3.10 The steps of a single-qubit quantum computation
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INITIAL STATE

Typically, qubit systems start in a default state where the only possible outcome is for
every qubit to be 0. In other words, the probability of getting the outcome 0 from the
default state is 100%. 

 In our single-qubit simulator, we implement a function called init_state that
returns a list representation of a default single-qubit quantum state. 

def init_state():
    state = [0 for _ in range(2)]  
    state[0] = 1  
    return state

Let’s use this function to initialize a single-qubit state:

state = init_state()
print(state)

The output is a state where the amplitude corresponding to outcome 0 is 1:

[1, 0]

PREPARING A SINGLE-QUBIT STATE

When using quantum computers, we cannot write the state of a program directly. We
have to apply a set of instructions, called gates, to change the amplitudes. Program-
ming a quantum computer to have a desired quantum state is the subject of many of
the coming chapters in the book. However, in a classical simulator, we can write ampli-
tudes directly into a list. 

 To make sure the classical simulations mimic the behavior of a real quantum com-
puter, we need to remember that a single-qubit state consists of two amplitudes, and
the sum of the squared magnitudes of those amplitudes must be 1. To that end, let’s
create a function, prepare_state, that creates the state and validates these con-
straints. We can use the is_close function (defined in the chapter code) to check
that the sum of the magnitudes is 1. 

from util import is_close

def prepare_state(*a):
    state = [a[k] for k in range(len(a))]  
    assert(len(state) == 2)  
    assert(is_close(sum([abs(state[k])**2 for k in range(len(state))]), 1)) 
    return state

Listing 3.1 Function to create a default single-qubit state

Listing 3.2 Checking that a list of complex numbers is a valid single-qubit state

Creates a list with 
two 0 entries

Changes the first value (index 0) to 1 because 
in a default single-qubit state, the probability 
of outcome 0 is 1

Creates a new state list using the 
values passed to the function

Checks that the state 
has two amplitudes

Checks that the sum of the
squared magnitudes is 1
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For example, let’s check that the example state we used previously is a valid quan-
tum state:

list = [0.2958+0.51235j, -0.40311+0.69821j]
state = prepare_state(*list)

3.2 Changing amplitudes with single-qubit gates
Now that we have implemented the simulation code for initializing a quantum state,
let’s move on to the next part of a quantum computation: changing amplitudes. This
section will focus on basic quantum instructions, called gates, which alter pairs of
amplitudes in quantum systems with any number of qubits. Changing the state of a
single-qubit system can be thought of as changing the probabilities of the sides of a coin.
The pairs of combined amplitudes are determined by the target qubit of the gate. Note
that all the gates preserve the combined probability of the outcomes in the pair. In the
case of a single-qubit quantum system, there is only one option for the target qubit and
only one pair of amplitudes. In the next chapter, we will explain how pairs are selected
when there is more than one qubit. In this section, we will focus on the definitions of
common single-qubit gates and the result of applying them to a single-qubit state. We
will use the state table representation whenever it’s helpful for understanding. 

3.2.1 Rotation is multiplication

A few gates rely on rotating amplitudes. Given a complex number with magnitude r and
direction θ (measured counterclockwise from the positive x axis), we can express it as 

If we multiply it by a complex number with magnitude 1

we get

Effectively, the result is the counterclockwise rotation of the initial complex number
by an angle ϕ.

Multiplying complex numbers in polar form
Given two complex numbers in polar form
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In code implementations of rotations, we will use the shortcut function in listing 3.3.
This function is named for the shorthand cis notation defined by 

def cis(theta):
    return cos(theta) + 1j*sin(theta)

NOTE You may be familiar with the exponential notation eiϕ = cos ϕ + i sin ϕ,
an equality known as Euler’s formula. We prefer to use the cis function,
which is concise and developer friendly. 

3.2.2 Basic single-qubit gates

In this section, we will look at eight common single-qubit gates in detail. You will
notice that some gates change the outcome probabilities, some change the directions,
and some change both. We will show the effect of a gate transformation using which-
ever form of the state best captures the transformation. 

THE X GATE

Also called the NOT gate, the X gate swaps the amplitudes corresponding to a pair of
outcomes. In the state table, the data in the rows corresponding to those outcomes
are swapped, as shown in figure 3.11. 

To simulate an X gate applied to a single-qubit state in code, we just need to swap the
items in the pair of amplitudes:

state = [state[1], state[0]]

(continued)

their product is

In words, magnitudes are multiplied, and directions are added.

Listing 3.3 Shortcut function for rotations

Outcome Amplitude Outcome Amplitude

Figure 3.11 The general form of 
the effect of the X gate on a pair 
of amplitudes
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Figure 3.12 shows an example of applying an X gate to a single-qubit state. 

THE Z GATE

This gate multiplies the 1 side of a pair of amplitudes by –1. It changes the signs of
both the real and the imaginary parts of the amplitude of the 1 side of the pair. Fig-
ure 3.13 shows the effect of the Z gate on the amplitudes of a single-qubit state. 

The magnitude of that amplitude does not change (and therefore its probability does
not change), but the direction is reversed (changed by 180°). Figure 3.14 shows the
effect of the Z gate on the probabilities with directions representing a single-qubit state.

The effect of the Z gate on a single-qubit state is straightforward to simulate. The
transformation can be simulated with the following code:

state = [state[0], -state[1]]

Figure 3.15 shows an example of the result of the application of the Z gate on an
example single-qubit state in state table and clock form.

Out Bin Ampl Dir Mag Ampl bar

0 0 0.30 − 0.17i −30.3° 0.35

1 1 −0.71 + 0.62i 138.9° 0.94

Out Bin Ampl Dir Mag Ampl bar

0 0 −0.71 + 0.62i 138.9° 0.94

1 1 0.30 − 0.17i −30.3° 0.35

0

1 0

1

Figure 3.12 The effect of the X gate on an example pair of amplitudes

Outcome Amplitude Outcome Amplitude

Figure 3.13 The general form of the effect of the Z gate on a pair of amplitudes

Outcome Direction Probability Outcome Direction Probability

Figure 3.14 The general form of the effect of the Z gate on a pair of probabilities with direction
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THE PHASE GATE

The phase gate rotates the 1 side of a pair of amplitudes by a given angle. We denote
by P(ϕ) the Phase gate that uses ϕ as a rotation angle in radians. Remember that rota-
tion is multiplication, as shown in figure 3.16. 

When a phase gate is applied, the direction of the amplitude on the 1 side of the pair
changes by ϕ, as shown in figure 3.17. The probabilities are not changed.

Given what we know about rotating an amplitude by a given angle, we can use the fol-
lowing code to get the new value of the 1 side of a single-qubit amplitude pair after
applying a phase gate:

Exercise 3.2
Write code that verifies that multiplying the 1 side of the following example state by
–1 reverses its direction:

state = [sqrt(0.3), -sqrt(0.7)]

Out Bin Ampl Dir Mag Ampl bar

0 0 0.30 − 0.17i −30.3° 0.35

1 1 −0.71 + 0.62i 138.9° 0.94

Out Bin Ampl Dir Mag Ampl bar

0 0 0.30 − 0.17i −30.3° 0.35

1 1 0.71 − 0.62i −41.1° 0.94

0

1

0
1

Figure 3.15 The effect of the Z gate on an example pair of amplitudes

Outcome Amplitude Outcome Amplitude

Figure 3.16 The effect of the P(ϕ) gate on a pair of amplitudes

Outcome Direction Probability Outcome Direction Probability

Figure 3.17 The general form of the effect of the P(ϕ) gate on a pair of probabilities with direction
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phi = pi/3
state = [state[0], cis(phi)*state[1]]  

Figure 3.18 shows an example of the result of the application of the P(π/3) gate on an
example single-qubit state. Note that an angle of π/3 radians is the same as 60°. 

THE HADAMARD GATE

The Hadamard gate (or H gate), named after the famous mathematician Jacques
Hadamard, replaces an amplitude pair with their sum and difference divided by the
square root of 2, as shown in figure 3.19. Note that dividing by the square root of 2 is
the same as multiplying by the square root of 1/2. 

Adding and subtracting vectors
The addition and subtraction of two given vectors in a plane produce the diagonals of
a parallelogram formed from these vectors. The Parallelogram Law states that the sum
of the squares of the diagonals' lengths is twice the sum of the squares of the original
vectors' magnitudes. The Hadamard gate replaces the original vectors with the paral-

lelogram diagonals scaled down by , resulting in new vectors whose squared mag-
nitudes add to the same value as the original vectors' squared magnitudes.

Addition and subtraction of two vectors in a plane produces the diagonals of a parallelogram.

Uses the cis shortcut 
function from listing 3.3

Out Bin Ampl Dir Mag Ampl bar

0 0 0.30 − 0.17i −30.3° 0.35

1 1 −0.71 + 0.62i 138.9° 0.94

Out Bin Ampl Dir Mag Ampl bar

0 0 0.30 − 0.17i −30.3° 0.35

1 1 −0.89 − 0.30i −161.1° 0.94

0

1

01

Figure 3.18 The effect of the P(π/3) gate on our example state

Outcome Amplitude Outcome Amplitude

Figure 3.19 The general form of 
the effect of the H gate on a pair 
of amplitudes

a

b a+b

a

b

a

b

a
-b
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To simulate a Hadamard gate application on a single-qubit state, we can use the fol-
lowing code:

state = [sqrt(0.5)*(state[0] + state[1]), sqrt(0.5)*(state[0] -state[1])]

Figure 3.20 shows an example of the result of the application of the H gate on our
example single-qubit state.

The Hadamard gate can be used to assign equal probabilities to the two outcomes
when starting with a state where the total probability is assigned to one of them. Fig-
ure 3.21 shows how this is done. 

THE RZ GATE

For a given angle θ, the RZ(θ) gate rotates the 0 side of a pair of amplitudes clockwise
by θ/2 and the 1 side of the pair counterclockwise by θ/2. Figure 3.22 shows a RZ(θ)
rotation as the multiplication of complex numbers. Applying an RZ(θ) gate changes
both directions but does not change the probability of either outcome, as shown in
figure 3.23. 

Out Bin Ampl Dir Mag Ampl bar

0 0 0.30 − 0.17i −30.3° 0.35

1 1 −0.71 + 0.62i 138.9° 0.94

Out Bin Ampl Dir Mag Ampl bar

0 0 −0.29 + 0.31i 132.8° 0.42

1 1 0.71 − 0.56i −38.2° 0.91

0

1
0

1

Figure 3.20 The effect of the H gate on our example pair of amplitudes

Out Bin Ampl Dir Mag Ampl bar

0 0 1 0.0° 1

1 1 0 0

Out Bin Ampl Dir Mag Ampl bar

0 0 0.71 0.0° 0.71

1 1 0.71 0.0° 0.71

Figure 3.21 The effect of the H gate on the default single-qubit state

Outcome Amplitude Outcome Amplitude

Figure 3.22 The general form of 
the effect of the RZ gate on a pair 
of amplitudes
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To simulate the application of an RZ gate on a single-qubit quantum state, we need to
change the direction of both amplitudes:

theta = pi/3
state = [cis(-theta/2)*state[0], cis(theta/2)*state[1]]

Figure 3.24 shows an example of the result of the application of the RZ gate on our
example single-qubit state. 

THE Y GATE

The effect of the Y gate on the amplitudes in a pair is equivalent to carrying out the
following two steps:

1 Rotate the amplitude on the 0 side counterclockwise by 90° and the amplitude
on the 1 side clockwise by 90°.

2 Swap the two amplitudes.

The effect of applying a Y gate on the amplitudes of a single-qubit state is shown in fig-
ure 3.25. Applying a Y gate to a single-qubit state changes both directions and swaps
the probabilities, as shown in figure 3.26.

Outcome Direction Probability Outcome Direction Probability

Figure 3.23 The general form of the effect of the RZ gate on a pair of probabilities with direction

Out Bin Ampl Dir Mag Ampl bar

0 0 0.30 − 0.17i −30.3° 0.35

1 1 −0.71 + 0.62i 138.9° 0.94

Out Bin Ampl Dir Mag Ampl bar

0 0 0.17 − 0.30i −60.3° 0.35

1 1 −0.92 + 0.18i 168.9° 0.94

0

1

0

1

Figure 3.24 The effect of the RZ(π/3) gate on our example pair of amplitudes

Outcome Amplitude Outcome Amplitude

Figure 3.25 The general form of the effect of the Y gate on a pair of amplitudes
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We can simulate a Y gate transformation on a single-qubit state with the following code:

state = [-1j*state[1], 1j*state[0]]

Figure 3.27 shows an example of the result of applying the Y gate on a concrete single-
qubit state. 

3.2.3 The general form of a single-qubit gate

We were able to describe the effect of the X, Y, Z, H, P, and RZ gates on the amplitudes
of a qubit in plain language. We saw that they can move some probability from one
outcome to the other, but the total probability of the outcomes is still 1. 

 They have another property in common: they are linear transformations. This
means their effect can be defined by a two-by-two matrix that is used to recombine the
amplitudes in a pair to obtain new ones:

The recombination of amplitudes for a single-qubit state can be implemented with
variations of the following code. This snippet simulates applying the Hadamard gate
to a single-qubit state:

(a, b, c, d) = (1/sqrt(2), 1/sqrt(2), 1/sqrt(2), -1/sqrt(2))
state = [a*state[0] + b*state[1], c*state[0] + d*state[1]]

Outcome Direction Probability Outcome Direction Probability

Figure 3.26 The general form of the effect of the Y gate on a pair of probabilities with direction

Out Bin Ampl Dir Mag Ampl bar

0 0 0.30 − 0.17i −30.3° 0.35

1 1 −0.71 + 0.62i 138.9° 0.94

Out Bin Ampl Dir Mag Ampl bar

0 0 0.62 + 0.71i 48.9° 0.94

1 1 0.17 + 0.30i 59.7° 0.35

0

1 0
1

Figure 3.27 The effect of the Y gate on our example pair of amplitudes
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Figure 3.28 shows the two-by-two matrices corresponding to the gates discussed so far.

3.2.4 More basic single-qubit gates

In this section we will introduce two more single-qubit gates, the RX gate and the RY

gate. These gates are not at easy to describe intuitively, so we will rely on their two-by-two
matrix representation. 

THE RX GATE

For a given angle θ, the RX(θ ) gate is defined by the matrix 

Depending on the angle used, the RX gate can change the magnitude and direction of
both sides of an amplitude pair. Therefore, it is helpful to examine several examples

Exercise 3.3
Find the values a, b, c and d for which the following is true for any pair of amplitudes
z0, z1:

Exercise 3.4
Show that YX = –XY, ZX = –XZ, and ZY = –YZ. 

Figure 3.28 Two-by-two matrix 
representations for the X, Y, Z, H, P, 
and RZ gates
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of RX gate applications. In the chapter code, you will find examples of RX gate applica-
tions with different angles. Figure 3.29 shows an example of the result of applying a RX

gate with angle parameter π/3 on our example single-qubit state. 

THE RY GATE

For a given angle θ, the RY(θ) gate is defined by the matrix 

The RY gate may be hard to understand with pure intuition. When applied to the
default state, the RY gate keeps the amplitudes real. You can think of it as a dial, effec-
tively modeling a (biased) coin. There are several examples of RY-gate applications in
the chapter code. Figure 3.30 shows an example of the result of applying the RY gate
with angle parameter π/3 on our example single-qubit state.

Exercise 3.5
Check that rotations of the same type compose by adding rotation angles. For exam-
ple, RY(θ2)RY(θ1) = RY(θ1 + θ2).

Out Bin Ampl Dir Mag Ampl bar

0 0 0.30 − 0.17i −30.3° 0.35

1 1 −0.71 + 0.62i 138.9° 0.94

Out Bin Ampl Dir Mag Ampl bar

0 0 0.57 + 0.20i 19.6° 0.60

1 1 −0.70 + 0.38i 151.3° 0.80

0

1
0

1

Figure 3.29 The effect of the RX(π/3) gate on our example pair of amplitudes

Out Bin Ampl Dir Mag Ampl bar

0 0 0.30 − 0.17i −30.3° 0.35

1 1 −0.71 + 0.62i 138.9° 0.94

Out Bin Ampl Dir Mag Ampl bar

0 0 0.61 − 0.46i −36.9° 0.77

1 1 −0.46 + 0.45i 136.1° 0.64

0

1

0

1

Figure 3.30 The effect of the RY(π/3) gate on our example pair of amplitudes
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3.2.5 Single-qubit gate inverses

Each quantum gate has an inverse, which reverses its effect on a pair of amplitudes.
This is a general property of quantum system evolution, where any transformation can
be reversed. Take the X gate, for example. This gate swaps the two amplitudes in a
pair. Applying it again reverses the first swap, thus undoing its effect. 

 We use the power of –1 to represent the inverse of a gate, the same way we do with
numbers. In the case of the X gate, X –1 = X.

 We can verify this with code. First, let’s apply an X gate to the default single-qubit
state:

state = init_state()      

state = [state[1], state[0]]  

print(state)

Where do rotation names come from?
Rotations are standard in controlling the flight of an object, as they allow it to maneu-
ver in the air and change its direction. Typically, these rotations are composed of
three axes: roll (X), pitch (Y), and yaw (Z). 

Roll is the rotation around the X, or longitudinal (front-to-back), axis. It is the move-
ment of the object banking left or right.

Pitch is the rotation around the Y, or lateral (side-to-side), axis. It is the movement of
the object’s front up or down.

Yaw is the rotation around the Z, or vertical (up-and-down), axis. It is the movement
of the object’s nose from side to side. 

Yaw Axis
Roll Axis

Pitch Axis

Rotations of a flying object

Creates a single-qubit 
default state

Applies an X gate 
to the state
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The output is a state where the amplitudes are swapped:

[0, 1]

If we apply another X gate, we get the initial amplitudes:

state = [state[1], state[0]]

print(state)

In the resulting state, the effect of the X gate is reversed, and the amplitudes are the
same as in the initial state:

[1, 0]

Figure 3.31 shows the inverses of the basic single-qubit gates.

Exercise 3.6
Use the definitions of the Y, Z, and H gates to prove that they are their own inverses.

The general form of inverse gates
It can be proven that the inverse of a single-qubit gate defined by a two-by-two matrix

Gate Inverse

Figure 3.31 Gate inverses
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3.3 Simulating changing amplitudes with gates
We now know how to simulate several of the components of a single-qubit computa-
tion in figure 3.32 using simple Python code. In section 3.1, we discussed how in most
quantum computers, the system’s initial state is one where the probability of measur-
ing 0 for every qubit is 100%. We defined the init_state function to create a list that
represents the initial state of a single-qubit state. 

On a classical computer, we can also just write values to the list representing the
state. We do need to check that the list represents a valid single-qubit state using the
prepare_state function. 

 
 

(continued)

is the gate corresponding to the matrix

Recall that the bar above a complex number denotes its conjugate. This matrix is
called the adjoint of U and is denoted by U†. This means U–1 = U†. 

Outcome

MeasureChange
probabilities

Change

probabilities
1

Initial state Collapsed stateRunning state

Figure 3.32 The steps of a single-qubit quantum computation, starting with the initial state and 
ending with a measurement
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3.3.1 Printing and visualizing the state

We will use the following function to read and help visualize a quantum state. 

def to_table(s, decimals=5):
    table = [
        [k, s[k], atan2(s[k].imag, s[k].real) / (2 * pi) * 360, abs(s[k]),
         abs(s[k]) ** 2] for k in range(len(s))]  

    table_r = [[round(x, decimals) if isinstance(x, float) else round(
        x.real) + 1j * round(x.imag, decimals) if isinstance(x,complex) else
        x for x in table[k]] for k in range(len(table))]  

    return table_r

def print_state(state, decimals=5):  
    print(*to_table(state, decimals),sep='\n')

Let’s initialize a single-qubit state and then visualize it:

state = init_state()
print_state(state)

The output is

[0, 1, 0.0, 1, 1]
[1, 0, 0.0, 0, 0]

NOTE In the Jupyter notebooks that accompany each chapter, we most often
use the print_state_table function to visualize quantum states. The output
of this function includes the colored amplitude bars. 

3.3.2 Transforming a single-qubit state

In a qubit-based quantum computer, we use quantum gates to change the amplitudes
of the state. In the previous section, we simulated single-qubit gate transformations
using short, gate-specific code snippets. In this section, we will define each gate in its
general form so that we can use one function to simulate the application of any gate.
This will make for a smoother transition to multi-qubit gate computations in the
next chapter. Remember that the general mathematical form of a single-qubit gate
is a two-by-two matrix:

We can use nested lists to encode the four values of a gate:

gate = [[a, b], [c, d]]

Listing 3.4 Visualizing a quantum state with a state table

Creates nested lists with outcome, amplitude,
direction, magnitude, and probability

Rounds the values 
(the default number
of digits is five)

Creates a function that prints 
the state table for a given state
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We can get the value of a with gate[0][0], and so on.
 The following listing defines several single-qubit gates that we will use to simulate

state evolution in a real quantum computer.

x = [[0, 1], [1, 0]]

z = [[1, 0], [0, -1]]

def phase(theta):
    return [[1, 0], [0, complex(cos(theta), sin(theta))]]

h = [[1/sqrt(2), 1/sqrt(2)], [1/sqrt(2), -1/sqrt(2)]]

def rz(theta):
    return [[complex(cos(theta / 2), -sin(theta / 2)), 0],
            [0, complex(cos(theta / 2), sin(theta / 2))]]

y = [[0, complex(0, -1)], [complex(0, 1), 0]]

def rx(theta):
    return [[cos(theta/2), complex(0, -sin(theta/2))],
            [complex(0, -sin(theta/2)), cos(theta/2)]]

def ry(theta):
    return [[cos(theta/2), -sin(theta/2)], [sin(theta/2), cos(theta/2)]]

We also know that we can compute the amplitudes after applying a gate with the formula:

In code, we will not use matrices to find the new amplitudes. Instead, we can compute
the new amplitude for outcome 0 with

gate[0][0]*state[0] + gate[0][1]*state[1]

and the new amplitude for outcome 1 with

gate[1][0]*state[0] + gate[1][1]*state[1]

We will use the transform function shown in listing 3.6 to apply gates to a single-qubit
state. When we pass the state to the transform function, we use the first element in
the array as the 0 side of the pair and the second element as the 1 side of the pair. In
later chapters, we will discuss quantum systems with more than one qubit and how to
select the amplitude pairs depending on the target qubit of the gate. 

 

Listing 3.5 Code implementations of basic single-qubit gates
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def transform(state, gate):
    assert(len(state) == 2)  
    z0 = state[0]
    z1 = state[1]
    state[0] = gate[0][0]*z0 + gate[0][1]*z1   
    state[1] = gate[1][0]*z0 + gate[1][1]*z1   

3.3.3 Single-qubit circuits

A single-qubit quantum circuit is a sequence of one or more single-qubit quantum
gates. The following is an example of initializing a single-qubit state, followed by a
series of transformations to change the amplitudes of the state:

s = init_state()
transform(s, ry(2*pi/3))
transform(s, x)
transform(s, phase(pi/3))
transform(s, h)

We can write this sequence of gates as an expression: HP(π/3) XRY(2π/3). Note that
the gates are listed in the reverse order of application, with gates added to the left of
the expression.

 It is very common to visualize circuits using a circuit diagram. We represent a qubit
as a horizontal line, or wire, and the gates applied to it by boxes on the line from left
to right in the order of their application, as shown in figure 3.33.

Let’s use the print_state function to look at the single-qubit state after these trans-
formations:

print_state(s)

[0, (0.78915+0.30619j), 21.20602, 0.84647, 0.71651]
[1, (0.4356-0.30619j), -35.10391, 0.53244, 0.28349]

We can use a state table to display the single-qubit quantum state, as shown in figure 3.34. 

Listing 3.6 Simulating applying gate transformations to a single-qubit gate

Checks that the state 
has two values

Finds the new value of 
the first amplitude

Finds the new value of 
the second amplitude

Figure 3.33 A circuit diagram representation 
of the gate sequence HP(π/3}) XRY(2π/3)

Outcome Binary Amplitude Direction Magnitude Amplitude bar Probability Probability bar

0 0 0.79 + 0.31i 21.2° 0.85 0.72

1 1 0.44 − 0.31i −35.1° 0.53 0.28

Figure 3.34 The state table of a single-qubit state after the transformations in figure 3.33
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3.4 Simulating measurement of single-qubit states
To get any information from a computation on a quantum computer, we need to per-
form a measurement. Therefore, in a quantum computation, a measurement is per-
formed after the instructions to change the amplitudes have been applied. Quantum
measurements are nondeterministic: given the same inputs, the output is not always
the same. 

 Each possible outcome has a certain probability of occurring, and these probabili-
ties must add up to 1. We call the probabilities of a set of possible outcomes a probabil-
ity distribution. Measuring a single-qubit state is like tossing a biased coin. 

 Let’s look at the state created in the previous example using the circuit in figure 3.35.
Using our simulator, we get the following state:

[0, (0.78915+0.30619j), 21.20602, 0.84647, 0.71651]
[1, (0.4356-0.30619j), -35.10391, 0.53244, 0.28349]

We can see in the printed statements that the probability of outcome 0 is 0.71651, and
the probability of outcome 1 is 0.28349.

If we run this circuit on a real quantum device, we will repeat the computation multi-
ple times. As we know, measurement is the last step for each execution, or run, of the
computation. When a measurement is performed, the quantum state collapses, and
one of the amplitudes becomes 1. The outcome corresponding to that amplitude is
the measured outcome. Figure 3.36 illustrates repeated executions of the single-
qubit circuit in figure 3.35. The visualization captures a measurement where the out-
come is 1, but we can see in the recorded counts that previous measurements pro-
duced other outcomes.

Figure 3.35 Example single-qubit circuit

Out Ampl bar

0

1 Process amplitudes

Out Ampl bar

0

1

Measure
Out Ampl bar

0

1

Read
outcome

0 1

Counts

Figure 3.36 The steps of running the single-qubit circuit in figure 3.35, with counts of the outcomes from 
previous executions of the computation
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We can use classical computers to simulate the nondeterminism of quantum measure-
ment. When we simulate measurement with Python, we do not need to repeat the
computation as we would on a quantum computer. Instead, we can just use the proba-
bilities of outcomes to select samples. In our Python simulator, we can use the choices
function from the random Python library, which takes the possible outcomes and the
probabilities of each outcome and returns a list of samples. Now, let’s simulate 10
measurements by getting 10 samples from the probability distribution determined by
the state:

from random import choices
from collections import Counter

samples = choices(range(len(s)), [abs(s[k])**2 for k in range(len(s))], k=10)
print(samples)

We get a list of the generated samples:

[0, 0, 0, 1, 0, 0, 1, 1, 0, 0]

Let’s count the resulting samples:

for (k, v) in Counter(samples).items():
    print(str(k) + ' -> ' + str(v))

0 -> 7
1 -> 3

In figure 3.37, we visualize the last step of the computation (measurement) six times.
This shows us what it might look like to perform six executions of the circuit on a
quantum computer.

 The resulting outcome frequency reflects the expected probabilities. If we take
more samples, we expect the frequencies to get closer to the exact probabilities. Let’s
try 1,000 samples:

samples = choices(range(len(s)), [abs(s[k])**2 for k in range(len(s))], k=1000)

for (k, v) in Counter(samples).items():
    print(str(k) + ' -> ' + str(v))

The counts of the samples are

0 -> 726
1 -> 274

Uses a list comprehension
to find the respectiv

probabilitie
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3.4.1 Encoding the uniform distribution in a single-qubit quantum state

The uniform distribution with two outcomes is the mathematical version of a fair coin,
where both outcomes have equal probability. Let’s use our simulator to create a single-
qubit state with equal outcome probabilities. With a single qubit in its initial state, all
we need to do is apply one of the following gates: H, RY(π/2), RX(π/2). 

 For example, let’s initialize a single-qubit state and apply a Hadamard gate:

state = init_state()

transform(state, h)

print_state(state)

We can see that the amplitudes of the state are equal, and therefore we know the
probabilities will be equal:

[0, '0', 0.70711, 0.0, 0.70711, 0.5]
[1, '1', 0.70711, 0.0, 0.70711, 0.5]

Let’s take 10 samples of this state:

Out Ampl Ampl bar

0 0

1 1

Read
outcome

0

0 1

Counts

Out Ampl Ampl bar

0 0

1 1

Read
outcome

0

0 1

Counts

Out Ampl Ampl bar

0 0

1 1

Read
outcome

0

0 1

Counts

Out Ampl Ampl bar

0 0

1 1

Read
outcome

1

0 1

Counts

Out Ampl Ampl bar

0 0

1 1

Read
outcome

0

0 1

Counts

Out Ampl Ampl bar

0 0

1 1

Read
outcome

0

0 1

Counts

Figure 3.37 Six measurements and the resulting outcome counts
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samples = choices(range(len(state)), [abs(state[k])**2 for k in 
range(len(state))], k=10)

for (k, v) in Counter(samples).items():
    print(str(k) + ' -> ' + str(v))

The counts of the samples are

0 -> 4
1 -> 6

When running on real quantum hardware, we have to decide how many times to
repeat the computation so that we can get the information we want from the fre-
quency of outcomes. This number depends on several factors, including the type of
problem, the desired level of confidence, and error rates, among others. 

3.5 Applications of single-qubit computations
A single-qubit state has just two amplitudes, so quantum parallelism does not offer any
benefit over classical implementations of the same computations. Nonetheless, a sin-
gle qubit still offers an advantage when it comes to using quantum measurement for
sampling from probability distributions with two outcomes. Let’s look at a few use
cases related to such distributions. 

3.5.1 Encoding a Bernoulli distribution in a single-qubit quantum state

The Bernoulli distribution models the probability of an event with only two possible out-
comes (a binary event). A Bernoulli distribution can be described by a single parameter
p, where the probability of getting one outcome is p and the other is 1 – p. For example,
if we flip a fair coin, the probability of getting heads is 0.5 and the probability of getting
tails is 0.5. In this example, the coin flip follows a Bernoulli distribution with p = 0.5. If
we flip a biased coin, the parameter p will be a different value. Figure 3.38 shows a verti-
cal bar graph representation of the Bernoulli distribution for p = 0.8. 

Bernoulli distribution ( =0.8)p

Outcome

P
ro

b
a

b
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Figure 3.38 The Bernoulli distribution for p = 0.8
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You can think of a Bernoulli distribution as the mathematical version of a coin, biased
or not. Applying RY(θ) for an angle θ to the default qubit state results in a state with
amplitudes cos θ/2 and sin θ/2. If we choose our angle θ such that cos2 θ/2 = p and
therefore sin2 θ/2 = 1 – p, the probabilities of the outcomes match those of the
desired Bernoulli distribution. A solution is .

 Let’s simulate encoding the Bernoulli distribution for p = 0.7:

from math import acos

p = 0.7
theta = 2*acos(sqrt(p)) 

s = init_state()
transform(s, ry(theta))  

print_state(s)

The resulting state is

[0, '0', 0.83666, 0.0, 0.83666, 0.7]
[1, '1', 0.54772, 0.0, 0.54772, 0.3]

In these printed results, we see that the probability of outcome 0 is 0.7. 

3.5.2 Encoding a number with a single qubit

Given a nonnegative real number x < 1,000, how can we encode it using a single
qubit? In this chapter, we will look at two options:

 The magnitude of one of the amplitudes (e.g., the magnitude of the amplitude
corresponding to outcome 0)

 The angle (or phase) of one of the amplitudes (e.g., the angle of the amplitude
corresponding to outcome 0)

ENCODING A NUMBER AS THE MAGNITUDE OF A (REAL) AMPLITUDE

Say we want to encode the value x = 273.5. We know that the magnitude of an ampli-
tude must be between 0 and 1, so we adjust our value to fit within this range: x/1000 =
0.2735. We want to create a single-qubit state where the magnitude of one of the out-
comes is 0.2735. 

 We start with a single qubit in its initial state, where the amplitudes of the state are
z0 = 1 and z1 = 0. If we apply an RY(θ) gate to a single-qubit state in its initial state, we
know the resulting amplitudes will be

Finds θ 
according to 
the value of p

Applies the 
RY(θ ) gate
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The resulting amplitude corresponding to outcome 0 will be z0 = cos θ/2. The magni-

tude of z0 will be . Using this knowledge, we can define the

angle θ  according to the value we would like to encode. In this case, we define θ  as θ = 2
arccos(0.2735).

 The following code creates a single-qubit state and encodes the value x = 273.5 in
the magnitude of the amplitude corresponding to outcome 0:

x = 273.5
theta = 2*acos(x/1000)                
assert is_close(cos(theta/2), x/1000)  

state = init_state()
transform(state, ry(theta))  

print_state(state)

The printed state table is as follows:

[0, '0', 0.2735, 0.0, 0.2735, 0.0748]
[1, '1', 0.96187, 0.0, 0.96187, 0.9252]

The resulting state table is shown in figure 3.39. As we can see, the magnitude of the
amplitude of outcome 0 reflects the encoded value. 

ENCODING A NUMBER IN THE ANGLE OF AN AMPLITUDE

To encode a value in the angle, or phase, of an amplitude, we start with a single-qubit
state in its initial state. We know that when we apply a Hadamard gate to an initial
single-qubit state, the amplitudes of the state will change as follows:

If we apply a phase gate next, the resulting amplitudes will be

Finds θ according 
to the value of x

Checks that θ is close 
the value to be encoded

Applies the RY(θ ) gate

Outcome Binary Amplitude Direction Magnitude Amplitude bar Probability Probability bar

0 0 0.27 0.0° 0.27 0.07

1 1 0.96 0.0° 0.96 0.93

Figure 3.39 The state table after encoding the value x = 273.5 in a single-qubit state in the magnitude 
of outcome 0
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If we apply a phase gate with angle parameter ϕ = π v, where 0 ≤ v < 0.5, the direction
(or phase) of the amplitude corresponding to the outcome 1 (θ1) will also be π v.

 If we want to encode the value x = 273.5 in the phase of the amplitude correspond-
ing to outcome 1, we will use v = x/1000. We can use the Hadamard gate followed by a
phase gate with the angle π v: P(π x/1000)H.

 The following code implements this example:

x = 273.5
theta = pi*x/1000  

state = init_state()
transform(state, h)              
transform(state, phase(theta))   

print_state(state)

The printed state table is

[0, '0', 0.70711, 0.0, 0.70711, 0.5]
[1, '1', (0.46176+0.53552j), 49.23, 0.70711, 0.5]

Let’s check that θ1 in the resulting state reflects our encoded value. We know that θ1 = π
x/1000, so we need to find θ1 and then solve for x:

direction_1 = atan2(state[1].imag, state[1].real)  
round(direction_1/pi*1000, 1)   

The output is

273.5

The resulting state table is shown in figure 3.40. Note that the phase of amplitude 1 in
our resulting state is θ1 = π (x/1000), so we will need to adjust for those factors to get
our encoded value. 

Finds θ according 
to the value of x

Applies an H gate followed 
by a P(θ ) rotation

Gets θ 1

Solves for x

Outcome Binary Amplitude Direction Magnitude Amplitude bar Probability Probability bar

0 0 0.71 0.0° 0.71 0.50

1 1 0.46 + 0.54i 49.2° 0.71 0.50

Figure 3.40 The state table after encoding the value x = 273.5 in a single-qubit state in the phase of 
the amplitude corresponding to outcome 1
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Summary
 Single-qubit computations are the simplest form of quantum computing. They

are comparable to tossing a coin and have two possible outcomes.
 You can simulate a one-qubit computation using a two-element list of complex

numbers. This list is initialized at the start and then undergoes simple transfor-
mations (known as single-qubit gates).

 The most common single-qubit gates are X, Y, Z, P, H, and rotational gates
(denoted as RX, RY, and RZ). These rotational gates require an angle parameter.

 You can visualize the state of a single-qubit system with state tables that include
amplitudes and other useful derived properties (directions, magnitudes,
probabilities).

 Sequences of gates are called quantum circuits.
 Quantum computations are nondeterministic. When repeated, they yield differ-

ent outcomes with distributions that reflect the state of the quantum system.
 The outcomes of a repeated quantum computation are aggregated into counts,

which compose the typical output of a quantum computer.
 Single-qubit computations can be used to generate truly random numbers from

Bernoulli distributions. 



Quantum state and
circuits: Beyond one qubit
In chapter 3, we introduced key concepts such as quantum states and quantum
gates in a single-qubit context. To solve consequential problems using a quantum
computer, we usually require more than one qubit.

 In this chapter, we will explore methods to represent multiple qubits program-
matically and visually, as we did for one qubit in chapter 3. We will learn how the
state of a multi-qubit system evolves via quantum transformations. We will then use
Python to create a quantum computing simulator that works with any number of
qubits. Finally, we will look at a couple of examples of useful quantum computa-
tions using this simulator. The concept map in figure 4.1 illustrates the quantum

This chapter covers 
 Understanding multi-qubit quantum states 

(using state tables)

 Using quantum gates to change amplitudes of 
multi-qubit states

 Using quantum circuits and registers to model 
quantum computations with Python

 Examples of preparing useful quantum states 
(encoding uniform and binomial distributions, 
Bell states)
69
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computing concepts covered in this chapter and how these concepts relate to and build
on each other.

4.1 Computing with more than one qubit
The power of quantum computing is fully realized when we use multiple qubits
together. By using more than one qubit, we can take advantage of the unique proper-
ties of quantum computers and perform more intricate computations. In this chapter,
we will explore the effects of quantum phenomena such as quantum measurement
and parallelism and review examples to help illustrate these concepts. Before diving
into those topics, let’s first discuss the fundamental components involved in a quan-
tum computation, as we did in chapter 3. 

4.1.1 Measurement counts

When running a quantum computation, the only output is a measurement result. A mea-
surement result is a binary string with a digit for each measured qubit. In this book we
will assume we are measuring all qubits unless specified otherwise. We repeat the same
computation several times and analyze the frequencies of the outcomes, often referred
to as counts. This allows us to extract relevant information from a quantum state and
find a solution for a given problem. 

 The way we interpret measurement counts depends on the problem. In chapter 1,
we discussed three main patterns for quantum computations:

1 Sampling from probability distributions
2 Searching for specific outcomes
3 Estimating the probability of specific outcomes

Let’s start with an example of the first pattern. 

Single-qubit gates
(X, Y, Z, H, P, RX, RY, RZ)

Control qubits Outcomes (Probability) Amplitudes

Entanglement

Quantum state

Quantum measurement

Quantum applications
(normal and binomial distributions, Bell states)

Quantum transformations

Target qubits

Quantum circuits

Quantum state and circuit visualizations
(state table, circuit)

Figure 4.1 A dependency diagram of concepts introduced in this chapter
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4.1.2 Sampling from a probability distribution

Each repetition of a quantum computation produces one nondeterministic outcome.
We can use quantum measurements to get random samples from a probability distri-
bution. Measurement is useful for sampling from distributions that are hard to handle
using classical methods. We know that the frequencies, or counts, of each outcome
reflect the probabilities determined by the amplitudes of the state. Therefore, we
need to change the amplitudes of the state to match the probability distribution we
would like to sample from. 

 For example, there are many applications for random sampling from a uniform dis-
tribution. In a uniform distribution, each value in a given set has an equal probability
of being selected. Samples from a uniform distribution are used for random number
generation or to generate random inputs for simulations and modeling. Quantum com-
putations produce randomly generated numbers, unlike the pseudorandom numbers
generated by classical computing. 

 In this chapter, we show how to encode a uniform distribution and other useful dis-
tributions in a quantum system with any number of qubits. Once we know how to do
that, we can perform truly random sampling from a uniform distribution on a quan-
tum computer. 

4.1.3 Understanding quantum computations with a simple Python 
simulator

To get a better understanding of how a quantum state evolves, we can use simulators
that run on classical computers. These simulators encode the fundamental principles
of quantum computing, making them useful for preparing and testing code intended
to run on a real quantum computer. 

 To simulate the application of an elementary quantum operation, a classical com-
puter has to sequentially process updates to the state (typically using a for loop).
Every additional qubit doubles the processing power needed to complete the simula-
tion. Therefore, simulating quantum computations on a classical computer can be
very computationally expensive. There are approaches to help make the process more
efficient, but for the purpose of understanding, we won’t focus on those methods in
our Python simulator. On the other hand, a simulator allows us to both inspect and
directly modify the state, unlike on a quantum computer. 

 In chapter 3, we looked at how to simulate the stages of a single-qubit quantum
computation using simple Python code. The components of the computation are the
same for a single qubit and multiple qubits. In this chapter, we will write the code for
simulating quantum computations with any number of qubits; we will use this code
throughout the rest of the book. The first thing to know is how to represent the state
of a multi-qubit system in Python. 
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4.2 A quantum state is a list of complex numbers
As we learned, we can describe the state of a single-qubit system with two complex
numbers, one for each of the two possible outcomes. The state of a multi-qubit system
also consists of a complex number for each possible outcome. We will start by explor-
ing two-qubit states. Then we will expand our understanding to states with any num-
ber of qubits. We will continue to use state tables to visualize these multi-qubit states
and Python lists to encode quantum states in our simulator. 

4.2.1 Two-qubit states

Each qubit represents a binary digit in a computational outcome. Therefore, a quan-
tum system with two qubits has four possible measurement outcomes: 0, 1, 2, and 3, or
'00', '01', '10', and '11' in binary form. Similar to single-qubit states, we represent the
state of two qubits with a list of four complex numbers (one for each outcome), which
is often called the state vector. For the list to be a valid quantum state, the squared mag-
nitudes of the four complex numbers must add to 1. 

THE GENERAL FORM OF A TWO-QUBIT STATE

Remember that we can define the general form of a single-qubit state with probabili-
ties and directions. Similarly, we can define a two-qubit state table with four probabili-
ties (p0, p1, p2, p3) that add to 1 and any four angles (θ0, θ1, θ2, θ3) defining the
direction for each of them. We can derive the amplitudes (complex numbers) from
the direction and probability associated to each outcome the same way we did in chap-
ter 3. We are given the direction, and we know the magnitude of the corresponding
amplitude will be the square root of the probability. With this information, we can
express the polar form of the amplitude corresponding to an outcome k (with 0 ≤ k < 4)
as . For example, the amplitude corresponding to outcome
0 will be . 

ENCODING A TWO-QUBIT STATE WITH A LIST OF COMPLEX NUMBERS

Again, a two-qubit quantum state can be represented as a list of four complex num-
bers, where the list index of an amplitude is the corresponding outcome. We can
encode the general form of a two-qubit state, as shown in figure 4.2, using the follow-
ing Python list:

from math import sqrt, cos, sin

[p0, p1, p2, p3] = [1, 0, 0, 0]
[theta0, theta1, theta2, theta3] = [0, 0, 0, 0]

state = [sqrt(p0) * (cos(theta0) + 1j * sin(theta0)),
         sqrt(p1) * (cos(theta1) + 1j * sin(theta1)),
         sqrt(p2) * (cos(theta2) + 1j * sin(theta2)),
         sqrt(p3) * (cos(theta3) + 1j * sin(theta3))]
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We can use the built-in random package in Python to generate example probabilities
and directions:

import random
from math import pi

random.seed(123456789)  

probs = [random.random() for _ in range(4)] 
total = sum(probs)
probs = [p/total for p in probs]  

angles = [random.uniform(0, 2*pi) for _ in range(4)]  

state = [sqrt(p)*(cos(a) + 1j*sin(a)) for (p, a) in zip(probs, angles)] 

Figure 4.3 shows the full state table for a quantum state generated with this code. 

PRODUCT STATES: COMPOSING A STATE FROM TWO INDEPENDENT SINGLE-QUBIT STATES

In earlier chapters, we talked about imagining a single qubit system as a (biased) coin.
Now, consider tossing two biased coins at the same time. After tossing the two coins,
there are four possible results: heads-heads, heads-tails, tails-heads, or tails-tails. This is
similar to composing a two-qubit quantum state from two single-qubit quantum states,
as we will see in the following example. 

 Figure 4.4 shows two single-qubit states in general form. Using probabilities with
direction is the same as using the polar form for the amplitudes of a quantum state.

 

Outcome Binary Direction Probability

Figure 4.2 The general form 
of a two-qubit state

Chooses a seed so 
we get reproducible 
results

Generates four 
random numbers

Normalizes each 
amplitude so the 
probabilities add to 1

Generates four random 
angles in radians

Builds the quantum state list

Outcome Binary Amplitude Direction Magnitude Amplitude bar Probability Probability bar

0 00 0.17 − 0.43i −67.8° 0.46 0.21

1 01 −0.34 + 0.26i 143.0° 0.42 0.18

2 10 0.53 − 0.22i −22.6° 0.57 0.33

3 11 −0.20 − 0.49i −111.9° 0.53 0.28

Figure 4.3 The state table for a random two-qubit quantum state
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Note that we can use the shortcut function introduced in chapter 3:

def cis(theta):
    return cos(theta) + 1j*sin(theta)

The first state has probability p = 0.75 for outcome 0 and amplitude directions θ0 = 0°
and θ1 = 60°:

p = 0.75
theta0 = 0
theta1 = 60/(180/pi)    
first_state = [sqrt(p)*cis(theta0), sqrt(1-p)*cis(theta1)]
print([round(amp.real, 5)+1j*round(amp.imag, 5) for amp in first_state])

The printed output is

[(0.86603+0j), (0.25+0.43301j)]

The second state has q = 0.5 as the probability for outcome 0 and amplitude directions
ϕ0 = 0° and ϕ1 = –120°:

q = 0.5
phi0 = 0
phi1 = -120/(180/pi)
second_state = [sqrt(q)*cis(phi0), sqrt(1-q)*cis(phi1)]
print([round(amp.real, 5)+1j*round(amp.imag, 5) for amp in second_state])

The printed output is

[(0.70711+0j), (-0.35355-0.61237j)]

If we create a product two-qubit state from these two single-qubit states, the new
amplitudes will be all the possible products of the two pairs of amplitudes.

Product of two complex numbers in polar form
When multiplying complex numbers in polar form, we multiply the magnitudes and
add the directions of the two numbers:

Outcome Direction Probability Outcome Direction Probability

First state Second state

Figure 4.4 State tables for 
two single-qubit states

Converts to 
radians
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The product of two amplitudes with directions θ and ϕ will have the direction θ + ϕ.
Figure 4.5 shows the general form of the combined state.

Let’s create a two-qubit state from the two single-qubit states:

new_state = [first_state[0]*second_state[0], first_state[0]*second_state[1],
                first_state[1]*second_state[0], first_state[1]*second_state[1]]
print([round(amp.real, 5)+1j*round(amp.imag, 5) for amp in new_state])

The printed output is

[(0.61237+0j), (-0.30619-0.53033j), (0.17678+0.30619j), (0.17678-0.30619j)]

If we write the combined state using the definitions in figure 4.4, we get the same result:

new_state = [sqrt(p*q)*cis(theta0 + phi0), sqrt(p*(1-q))*cis(theta0 + phi1),
                sqrt((1-p)*q)*cis(theta1 + phi0), sqrt((1-p)*(1-q))*cis(theta1 

+ phi1)]
print([round(amp.real, 5)+1j*round(amp.imag, 5) for amp in new_state])

The printed output is

[(0.61237+0j), (-0.30619-0.53033j), (0.17678+0.30619j), (0.17678-0.30619j)]

Not all two-qubit states are product states, where the measurement outcomes of each
qubit are independent. To unlock the advantages of quantum computing and benefit
from its unique features, we must use nonproduct states, where the two qubits become
entangled. We can think of two independent coins as a product two-qubit state, and two
dependent coins as a nonproduct state consisting of two entangled qubits, as visual-
ized in figure 4.6.

Outcome Binary Direction Probability

Figure 4.5 State table for the product state 
of the two single-qubit states in figure 4.4

Figure 4.6 We can think of two coins with 
independent bias as a product state and two 
dependent coins as a nonproduct state.
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EXAMPLES OF NONPRODUCT STATES: BELL STATES

Let’s look at computations where only the two outcomes with matching digits ('00'
and '11') are possible and have equal probability. This means p1 = p2 = 0 and p0 = p3 = 0.5.
This is similar to tossing two coins at the same time and getting the same result (two
heads or two tails) with an equal chance of either outcome. Later in the chapter, we
will show how to build this state, but for now, we will focus on its structure. 

 We can prove that such a state cannot be a product of two single-qubit states. Let’s
take two single-qubit states in general form: one with probability p for outcome 0 and
one with probability q for outcome 0. If we composed a two-qubit state from these single-
qubit states, the new state would have the following probabilities:

For the outcomes '01' and '10' to have probability 0 (p1 = p2 = 0), p and q must have the
same value, 0 or 1. If p = 0 and q = 0, then p0 = 0 and p3 = 1. If p = 1 and q = 1, then p0 = 1
and p3 = 0. Neither of these cases satisfies the requirement that p0 = p3 = 0.5.

 The following two-qubit quantum states have the properties we are looking for:

bell_state1 = [sqrt(0.5), 0.0, 0.0, sqrt(0.5)]

bell_state2 = [sqrt(0.5), 0.0, 0.0, -sqrt(0.5)]

We see that p1 and p2 are 0 and that p0 and p3 are equal and sum to 1. Figure 4.7 shows
the state tables of these states. They are known as the first two Bell states.

Quantum entanglement
Quantum entanglement is a physical phenomenon that occurs when qubits or parti-
cles such as photons, electrons, or atoms become linked together so that the quan-
tum state of each particle cannot be described independently of the others, even
when the particles are separated by large distances. This means the particles remain
connected even when they are separated spatially and can have an (apparently)
instantaneous influence on each other.

The Bell states, the topic of the next section, are the perfect example of how two
qubits can be entangled: their measurement values are linked. Entanglement is an
incredible phenomenon, but it comes at a cost in terms of processing power and sys-
tem coherence. Without entanglement, we would not be able to do any meaningful
quantum computing. To summarize, entanglement is essential in quantum comput-
ing, but it isn’t always efficient. 
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Similarly, the following two states also have only two possible outcomes with equal
probabilities ('01' and '10'):

bell_state3 = [0.0, sqrt(0.5), sqrt(0.5), 0.0]

bell_state4 = [0.0, sqrt(0.5), -sqrt(0.5), 0.0]

They are the last two Bell states, shown in figure 4.8.

Outcome Binary Amplitude Direction Magnitude Amplitude bar Probability Probability bar

0 00 0.71 0.0° 0.71 0.50

1 01 0.00 0.00 0.00

2 10 0.00 0.00 0.00

3 11 0.71 0.0° 0.71 0.50

Outcome Binary Amplitude Direction Magnitude Amplitude bar Probability Probability bar

0 00 0.71 0.0° 0.71 0.50

1 01 0.00 0.00 0.00

2 10 0.00 0.00 0.00

3 11 −0.71 180.0° 0.71 0.50

Figure 4.7 State tables for the first two Bell states

Outcome Binary Amplitude Direction Magnitude Amplitude bar Probability Probability bar

0 00 0.00 0.00 0.00

1 01 0.71 0.0° 0.71 0.50

2 10 0.71 0.0° 0.71 0.50

3 11 0.00 0.00 0.00

Outcome Binary Amplitude Direction Magnitude Amplitude bar Probability Probability bar

0 00 0.00 0.00 0.00

1 01 0.71 0.0° 0.71 0.50

2 10 −0.71 180.0° 0.71 0.50

3 11 0.00 0.00 0.00

Figure 4.8 State tables for the last two Bell states



78 CHAPTER 4 Quantum state and circuits: Beyond one qubit
4.2.2 Multi-qubit states

Now we can expand to quantum states with any number of qubits. A quantum system
with n qubits will have n binary digits in a measurement outcome. We know that there
are 2n binary strings of length n. This means there are 2n possible outcomes when run-
ning a computation using n qubits. The system’s state is represented by a complex
number for each possible outcome. 

THE GENERAL FORM OF A MULTI-QUBIT STATE

For n qubits, we can express each amplitude as zk = ak + ibk, where ak and bk are real
numbers, and k is the corresponding outcome, where 0 ≤ k < 2n. Figure 4.9 shows a
compact, general state table with these amplitudes. Note that in many cases it is easier
to define the state by specifying probabilities and directions for the outcomes, as
shown in figure 4.10. 

ENCODING A MULTI-QUBIT STATE WITH A LIST OF COMPLEX NUMBERS

A list or array of 2n complex numbers is the simplest and often the most efficient way
to describe a quantum state. The list’s indices match the integer representation of
the outcome. For a list of complex numbers to be a valid quantum state, it must have
a length that is a power of 2, and the sum of the squares of the magnitudes must
equal 1. 

 Note that we cannot directly set the state of a quantum system when running on
real quantum hardware. However, in a simulator, we can directly update the ampli-
tudes in a list. For example, let’s define an example state with the following eight com-
plex numbers:

Exercise 4.1
The famous mathematician John von Neumann proposed a method for getting fair
results by tossing a biased coin. The solution is succinctly described like this:

1 Toss the coin twice.
2 If the results match (HH or TT), start over, forgetting both results.
3 If the results differ (HT or TH), use the first result, forgetting the second.

Which Bell state offers a quantum solution to von Neumann’s problem?

Outcome Amplitude

Figure 4.9 The amplitudes of an n-qubit 
quantum state with outcomes 0 ≤ k < 2n

Outcome Direction Probability

Figure 4.10 The probabilities and directions of a 
quantum state with n qubits with outcomes 0 ≤ k < 2n
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amplitude_list = [(0.09858+0.03637j),
                (0.07478+0.06912j),
                (0.04852+0.10526j),
                (0.00641+0.16322j),
                (-0.12895+0.34953j),
                (0.58403-0.6318j),
                (0.18795-0.08665j),
                (0.12867-0.00506j)]

In our simulator, we allow setting amplitudes directly after validating the constraints
for a quantum state. This function, prepare_state, is defined in the following listing. 

from math import log2, ceil, floor
from util import is_close

def is_power_of_two(m):
    return ceil(log2(m)) == floor(log2(m))

def prepare_state(*a):
    state = [a[k] for k in range(len(a))]
    assert(is_power_of_two(len(state)))   
    assert (is_close(sum([abs(state[k]) ** 2 for k in range(len(state))]),
                     1.0))     
    return state   

Let’s check that the state we defined is a valid quantum state:

state = prepare_state(*amplitude_list)

We will use this state as an example throughout this section. 

BUILDING STATE TABLES WITH PYTHON LIST COMPREHENSIONS

Let’s look at the general form of a quantum state with n qubits shown in figure 4.11.
We will call figure 4.11 a table comprehension, referencing the fact that we can express
the same values in Python using the following list comprehension:

print([[k, state[k]] for k in range(len(state))])

The printed output is

[[0, (0.09858+0.03637j)],
 [1, (0.07478+0.06912j)],
 [2, (0.04852+0.10526j)],

Listing 4.1 Function to check whether a list is a valid quantum state

Checks that the length of 
the list is a power of 2

Checks that the squared 
magnitudes add to 1If the conditions 

are met, we 
return the state.

Outcome Amplitude

Figure 4.11 The amplitudes of an n-qubit 
quantum state with outcomes 0 ≤ k < 2n
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 [3, (0.00641+0.16322j)],
 [4, (-0.12895+0.34953j)],
 [5, (0.58403-0.6318j)],
 [6, (0.18795-0.08665j)],
 [7, (0.12867-0.00506j)]]

As we saw with single-qubit states, we can go from the amplitude form in figure 4.11
(zk = ak + ibk) to probabilities (pk) and directions (θk) using the following formulas:

Note that because atan2 returns values in the interval [–π, π], the direction in degrees
will be in the interval [–180°, 180°]. We can also express this representation as a table
comprehension, as shown in figure 4.12. 

In Python, we can use the following list comprehension to add probabilities and direc-
tions, derived from amplitudes:

from math import atan2

table1 = [
    [
        k,
        round(atan2(state[k].imag, state[k].real) / (2 * pi) * 360, 5),
        round(abs(state[k]) ** 2, 5)
    ] 
    for k in range(len(state))
]

for row in table1:
    print(row)

The printed output shows each outcome with the magnitude and direction of the cor-
responding amplitude:

[0, 20.25098, 0.01104]
[1, 42.74755, 0.01037]
[2, 65.25248, 0.01343]

Outcome Amplitude Direction Magnitude Probability

Figure 4.12 Table comprehension for a quantum state with n qubits 
with outcomes 0 ≤ k < 2n
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[3, 87.75103, 0.02668]
[4, 110.25023, 0.1388]
[5, -47.25, 0.74026]
[6, -24.75097, 0.04283]
[7, -2.25202, 0.01658]

We can build an expanded version of the state table that includes the direction and
magnitude of amplitudes, as well as the probability of the outcomes:

expanded_table = [
    [
        k,
        state[k],
        round(atan2(state[k].imag, state[k].real) / (2 * pi) * 360, 5),
        round(abs(state[k]), 5),
        round(abs(state[k]) ** 2, 5)
    ]
    for k in range(len(state))
]

for row in expanded_table:
    print(row)

The printed output shows each outcome and the corresponding amplitude, magni-
tude, direction, and probability:

[0, (0.09858+0.03637j), 20.25098, 0.10508, 0.01104]
[1, (0.07478+0.06912j), 42.74755, 0.10183, 0.01037]
[2, (0.04852+0.10526j), 65.25248, 0.1159, 0.01343]
[3, (0.00641+0.16322j), 87.75103, 0.16335, 0.02668]
[4, (-0.12895+0.34953j), 110.25023, 0.37256, 0.1388]
[5, (0.58403-0.6318j), -47.25, 0.86038, 0.74026]
[6, (0.18795-0.08665j), -24.75097, 0.20696, 0.04283]
[7, (0.12867-0.00506j), -2.25202, 0.12877, 0.01658]

Conversely, starting with probabilities and directions, we can get the amplitudes of the
state using the following formulas:

In Python, we can use the following list comprehension to get amplitudes from direc-
tions and probabilities:

table2 = [
    [
        row[0],
        (
            round(sqrt(row[2]) * cos(row[1] / (180 / pi)), 5) + 
            round(sqrt(row[2]) * sin(row[1] / (180 / pi)), 5) * 1j
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        )
    ] 
    for row in table1
]

for row in table2:
        print(row)

The printed output shows each outcome and the corresponding amplitude:

[0, (0.09858+0.03637j)]
[1, (0.07478+0.06912j)]
[2, (0.04851+0.10524j)]
[3, (0.00641+0.16321j)]
[4, (-0.12895+0.34953j)]
[5, (0.58403-0.6318j)]
[6, (0.18794-0.08665j)]
[7, (0.12866-0.00506j)]

If we use probabilities and directions, the expanded table is shown in figure 4.13.

Finally, as we did for single-qubit states, we can use a more visually informative repre-
sentation of the state table, shown in figure 4.14, that includes amplitude bars and
probability bars. Remember, the colors of the amplitude bars reflect the phases of the
associated amplitude using the color wheel method discussed in chapter 3.

Outcome Amplitude Direction Magnitude Probability

Figure 4.13 Table comprehension for a quantum state with n qubits with 
outcomes 0 ≤ k < 2n

Outcome Binary Amplitude Direction Magnitude Amplitude bar Probability Probability bar

0 000 0.10 + 0.04i 20.3° 0.11 0.01

1 001 0.07 + 0.07i 42.7° 0.10 0.01

2 010 0.05 + 0.11i 65.3° 0.12 0.01

3 011 0.01 + 0.16i 87.8° 0.16 0.03

4 100 −0.13 + 0.35i 110.3° 0.37 0.14

5 101 0.58 − 0.63i −47.2° 0.86 0.74

6 110 0.19 − 0.09i −24.8° 0.21 0.04

7 111 0.13 − 0.01i −2.3° 0.13 0.02

Figure 4.14 Table comprehension for a quantum state with n qubits with outcomes 0 ≤ k < 2n
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4.2.3 Simulating multi-qubit states in Python

We know we can represent multi-qubit states with Python lists. Now we can write the
Python code we need for simulating the first step of a quantum computation: initializ-
ing the state. 

INITIALIZING A MULTI-QUBIT STATE

Most qubit-based quantum computers start with all qubits in a default state with a
100% probability of measuring the outcome 0. In our simulator, we define a function
called init_state that takes the number of qubits as an argument and returns a list
representing the initial state. 

def init_state(n):
    state = [0 for _ in range(2 ** n)]  
    state[0] = 1   
    return state

For example, we can initialize a two-qubit state:

state = init_state(2)
print(state)

The output is

[1, 0, 0, 0]

Deep dive: Ket notation from list comprehensions
Using ket notation, we can express a quantum state as a mathematical sum

where n is the number of qubits. This notation is similar to the table comprehensions
and list comprehensions discussed in this section. State tables visually bridge math
and code. 

Listing 4.2 Function to create a default quantum state

Given n qubits, the state will 
contain 2n complex numbers.

The amplitude corresponding to 
outcome 0 (the first amplitude in 
the list) will have a value of 1.
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4.3 Changing amplitudes with quantum transformations
In a quantum computation, we use gate transformations to change the amplitudes of a
quantum state and therefore the probabilities of the possible outcomes. When applying
a gate to a single-qubit state, we recombine its two amplitudes using two equations.
When we apply a gate to a multi-qubit state, the same equations are used to recombine
all amplitudes in pairs. Quantum gate transformations are applied to a selected qubit in
a system called the target qubit, which determines the pairs of amplitudes to be recom-
bined. When we looked at single-qubit states in the previous chapter, there was only one
option for the target qubit and only one pair to recombine. In this chapter, we will look
at what happens when we apply gates to various qubits in a multi-qubit system. 

4.3.1 Selecting pairs of amplitudes based on the target qubit

The target qubit determines how we pair the amplitudes for recombination. To select
pairs, we look at the possible outcomes in binary form. The pairs are the amplitudes
of the outcomes that differ only in the digit of the target qubit. 

 For example, if we apply a gate to one of the qubits of a three-qubit state, there are
three options for the target qubit, which we will denote by t: t = 0, t = 1, and t = 2. Note
that qubits are indexed right to left, so the rightmost digit in the binary string outcome
represents qubit 0. As we know, there are eight possible outcomes for a three-qubit sys-
tem, '000', '001', '010', '011', '100', '110', '101', and '111'. If we apply a single-qubit gate
with target t = 0, the pairs will be the amplitudes of outcomes that differ only in position
t = 0. The pairs are highlighted in figure 4.15. We show the pairs sequentially, like they
are processed when we simulate the transformation. When running on a real quantum
computer, applying a transformation does not involve sequential steps.

As discussed in chapter 2, when converting from binary (base 2) form to decimal
(base 10) form, each digit in a binary number is multiplied by a power of 2, starting

Outcome Binary
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3 011

4 100

5 101

6 110

7 111
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Outcome Binary
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Outcome Binary
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3 011

4 100

5 101

6 110

7 111

Figure 4.15 The pairs of outcomes for applying a single-qubit gate to a three-qubit 
system with the target qubit in position 0
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with 20 for the rightmost digit. This means if the binary forms of two numbers differ
only in position t, the decimal values of the numbers differ by 2t. Given a transforma-
tion with a target t, we can find the outcomes whose binary representation has 0 in the
position t and add 2t to them to identify the other amplitude in the pair.

 In the previous example, where t = 0, the decimal values of the outcomes of each
pair differ by 1. In this case, the rows of each pair are next to each other.

 If we apply a gate to a three-qubit system with target qubit t = 1, the binary form of
the outcomes differ only in position 1 and the decimal forms of the outcomes differ by
2, as shown in figure 4.16. Finally, if the target qubit is t = 2, the first digit in the binary
outcomes, the decimal values of the outcomes differ by 4, as shown in figure 4.17.

We can use a table comprehension to show the outcome and amplitudes of pairs before
and after a gate transformation with target qubit t. This is illustrated in figure 4.18. 
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Figure 4.16 The pairs of outcomes for applying a single-qubit gate to a three-qubit 
system with the target qubit in position 1
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Figure 4.17 The pairs of outcomes for applying a single-qubit gate to a three-qubit 
system with the target qubit in position 2
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4.3.2 Pair selection in Python

To simulate gate transformations, we need to select the pairs of amplitudes to be recom-
bined. Several strategies can be used to find the pairs in code. Each method has advan-
tages and disadvantages in terms of caching and resource consumption. In this chapter,
we will discuss only one strategy; two more strategies are discussed in appendix C. 

PAIRING CHUNKS OF AMPLITUDES

Given a target qubit position t, we can identify pairs of outcomes utilizing what we call
chunks. There is a pattern for the location of the 0 side and 1 side of pairs: chunks of 2t

outcomes with 0 in the target position are followed by a chunk of 2t outcomes with 1
in that position. Therefore, we can traverse the outcomes in chunks of 2t. If we tra-
verse the first chunk, 0, through 2t – 1, we know the 1 sides of the pairs will be 2t

through 2t+1 – 1. The chunks for three-qubits and the target qubit t = 1 are visualized
in figure 4.19. 

The Python implementation of this method is shown in the following listing.

def pair_generator_pattern(n, t):
    distance = int(2 ** t)          

Listing 4.3 Traverse-by-chunk method for selecting pairs

Outcome Amplitude Outcome Amplitude

Figure 4.18 The pairs of outcomes and amplitudes of an n-qubit state (with outcomes 
0 ≤ k < 2n) before and after applying a gate transformation to the target qubit t

Outcome Binary
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t =1

0-side
chunk

1-side
chunk

0-side
chunk

1-side
chunk

The 0 side and
1 side of a pair
are 2t apart.

Figure 4.19 Pair generating strategy 
using chunks of outcomes for a three-qubit 
system and the target qubit t = 1

Distance is the size 
of each chunk.
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    for j in range(2**(n-t-1)):
        for k0 in range(2*j*distance, (2*j+1)*distance):   
            k1 = k0 + distance   
            yield k0, k1

Let’s take the example of three qubits (n = 3) and the target qubit 0 (t = 1) and gener-
ate the pairs using this method:

for (k0, k1) in pair_generator_pattern(3, 1):
    print(k0, k1)

The generated pairs of outcomes are printed:

0 2
1 3
4 6
5 7

The pairs match the highlighted rows discussed earlier and shown in figure 4.16. 

4.3.3 Simulating amplitude changes

Remember that when applying a general single-qubit quantum gate (a two-by-two
matrix with entries a, b, c, d) to a pair of amplitudes z0 and z1, the new amplitudes are 

In Python code, we can define a function process_pair that computes the new ampli-
tudes of a pair of outcomes. To simulate a gate transformation on a multi-qubit state,
we will use the transform function, which takes a state, a target qubit, and a gate (as a
two-by-two list) and then simulates a gate transformation by selecting the pairs and
calling process_pair to compute the new amplitudes. The definitions of these func-
tions are shown in the next listing. Note that the pair_generator function can be any
pair-selecting strategy, including that in listing 4.3. 

def process_pair(state, gate, k0, k1):
    x = state[k0]                                 
    y = state[k1]                                 
    state[k0] = x * gate[0][0] + y * gate[0][1]   
    state[k1] = x * gate[1][0] + y * gate[1][1]   

Listing 4.4 Functions to simulate a gate transformation on a multi-qubit state

Gets the 0 side 
of each pair

Gets the 1 side of the
pair by adding the

distance (2t)

Gets the original 
amplitudes of the pair

Computes the amplitudes given the 
gate definition and replaces the old 
amplitudes in the state list
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def transform(state, t, gate):
    n = int(log2(len(state)))                       
    for (k0, k1) in pair_generator(n, t):   
        process_pair(state, gate, k0, k1)   

Let’s look at some examples of gate transformations on a multi-qubit state. If we apply
an X gate to the qubit in position 0 (t = 0), the amplitudes of each pair will be
swapped. In figure 4.20, we start with an example three-qubit state and show how each
pair of amplitudes is processed (recombined).

Let’s use the example state from figure 4.20 as a list:

state = [(0.09858+0.03637j),
        (0.07478+0.06912j),
        (0.04852+0.10526j),
        (0.00641+0.16322j),
        (-0.12895+0.34953j),
        (0.58403-0.6318j),
        (0.18795-0.08665j),
        (0.12867-0.00506j)]

Now we can use the transform function to apply an X gate to target qubit 0:

from sim_gates import *   

transform(state, 0, x)
print(state)

The resulting output is

[(0.07478+0.06912j),
 (0.09858+0.03637j),
 (0.00641+0.16322j),
 (0.04852+0.10526j),
 (0.58403-0.6318j),
 (-0.12895+0.34953j),

Gets the number of 
qubits in the state

Calls pair_generator, which 
returns pairs as tuples given 
a number of qubits (n) and 
the target qubit (t)

For each pair, calls
process_pair to compute

the new amplitudes
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Figure 4.20 Amplitude pair processing for the X gate applied to target qubit 0 in a three-qubit system

Imports the gate definitions 
added to the source code 
from chapter 3
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 (0.12867-0.00506j),
 (0.18795-0.08665j)]

We can see that the amplitudes of each pair are swapped, and the final state matches
the last state table in figure 4.21.

Let’s apply an X gate to the same example three-qubit state, but this time we will apply
the gate to the qubit in position 2 (t = 2), as shown in figure 4.21. The outcome
(amplitude) pairing pattern shown here is native to qubit-based computing but is also
used in classical computing. In particular, the fast Fourier transform algorithm uses it
to drastically improve the performance of computing Fourier transforms.

 We will discuss the quantum version of Fourier transforms in chapter 7. Butterfly
diagrams, shown in figure 4.22, are used to represent this pairing pattern. We can also
indicate which pairs of outcomes are paired by using circular diagrams, shown in fig-
ure 4.23, where each sector represents an outcome.
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Figure 4.21 Amplitude pair processing for the X gate applied to target qubit 2 in a three-qubit system
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Figure 4.22 Butterfly diagrams of the pairs of outcomes in a three-qubit system for 
targets 0, 1, and 2
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4.3.4 Encoding a uniform distribution in a multi-qubit quantum system

In a uniform distribution, each outcome has an equal probability. In a quantum state,
this means all the amplitudes must have equal magnitudes. We already encoded a uni-
form distribution in a single qubit in the previous chapter. With the concepts intro-
duced in this chapter, we can encode a uniform distribution in a state with any
number of qubits. 

 Let’s use our simulator to encode a uniform distribution in a three-qubit system.
First we initialize a three-qubit state:

state = init_state(3)

We know that each time we apply a gate, it will process all the amplitudes in pairs.
Also, all the amplitudes in the initial state are 0 except the first one:

Quantum superposition and parallelism
A quantum system is said to be in superposition when it is in an “undetermined” or
“uncertain” state. This can be thought of as being in multiple states at once. Math-
ematically, superposition is expressed as a summation of all possible states of the
system. In a state-table representation, multiple rows with nonzero amplitudes indi-
cate a system in superposition.

Quantum parallelism, enabled by superposition, is often considered the most power-
ful feature of quantum computing. When a quantum gate is applied, the result is
immediate in a quantum system. In contrast, a simulator can only achieve the same
result by processing pairs one at a time.

Quantum parallelism is similar to SIMD (single instruction, multiple data) processing.
This type of parallel processing allows one instruction to be applied to multiple data
elements simultaneously, improving the performance of CPUs by executing multiple
instructions at the same time. 

SIMD processing can be used to make certain tasks faster. For example, if the same
operation needs to be applied to multiple pieces of data, SIMD can help speed up
the process. Quantum parallelism can be thought of as unlimited SIMD. 
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Figure 4.23 Butterfly diagrams of the pairs of outcomes in a three-qubit system for 
targets 0, 1, and 2
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print(state)

[1, 0, 0, 0, 0, 0, 0, 0]

Thus, when we apply the first Hadamard gate (to any target qubit in the state), we will
only see the amplitudes of the pair with '000' in it change. For example, if we choose
target qubit 0, the amplitudes corresponding to outcomes '000' and '001' (which dif-
fer only in the target qubit position) will be paired. Let’s see this in our simulator:

transform(state, 0, h)
print(state)

In the printed output, we can see that the amplitudes corresponding to outcomes
'000' and '001' are recombined:

[0.7071067811865475, 0.7071067811865475, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

Similarly, if we choose target qubit 1, the amplitudes corresponding to outcomes '000'
and '010' will be paired:

state = init_state(3)
transform(state, 1, h)
print(state)

In the printed output, we can see that the amplitudes corresponding to outcomes
'000' and '010' are recombined:

[0.7071067811865475, 0.0, 0.7071067811865475, 0.0, 0.0, 0.0, 0.0, 0.0]

If we use a Hadamard gate on each qubit in a system in its default state, the ampli-
tudes for all the outcomes will all be real numbers and have an equal magnitude. This
creates a state where each outcome has an equal probability. Thus, the state will have a
uniform probability distribution:

state = init_state(3)
transform(state, 0, h)
transform(state, 1, h)
transform(state, 2, h)
print(state)

We can see that all the amplitudes are real numbers, and the magnitudes are equal:

[0.3535533905932737,
 0.3535533905932737,
 0.3535533905932737,
 0.3535533905932737,
 0.3535533905932737,
 0.3535533905932737,
 0.3535533905932737,
 0.3535533905932737]
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In the state table in figure 4.24, we can see that the probabilities are uniformly distributed. 

4.4 Controlled quantum transformations
Every time we apply a quantum gate to a quantum state, all the amplitudes can be
changed at once. This is called quantum parallelism. As discussed, quantum parallelism
is one of the main sources of advantage in quantum computations. Although it can be
used to create efficient computations, it also limits the types of states we can create.
We can use controlled transformations to limit the effect of gate transformations to cer-
tain pairs. 

NOTE In a real quantum system, controlled transformations are usually com-
putationally more expensive than noncontrolled ones, and they typically
decrease the coherence of the system. But in a simulator, each control qubit
(position) cuts the number of pairs to recombine in half.

When applying a controlled transformation, the pairs of amplitudes to be recombined
correspond to outcomes that differ only in the target position and have a 1 in the con-
trol qubit position(s). For example, if we apply a controlled gate transformation to a
three-qubit state with target qubit 0 and control qubit 2, the pairs of amplitudes that
are recombined correspond to the outcomes that differ only in position 0 and have
the digit 1 in position 2. In figure 4.25, outcomes that do not have 1 in the control
qubit position are grayed out, and the selected pairs are highlighted. 

 Figure 4.26 shows another example. This time, the target qubit is in position 2 and
the control qubit is in position 1. Once again, the outcomes with 0 in the control
qubit position are grayed out and the target pairs are highlighted.

 When we apply a controlled gate transformation, the effect of the gate on a pair of
amplitudes remains the same, but the number of pairs is limited by the control qubit.
For example, if we apply a controlled X gate to a three-qubit state with the target qubit

Outcome Binary Amplitude Direction Magnitude Amplitude bar Probability Probability bar

0 000 0.35 0.0° 0.35 0.12

1 001 0.35 0.0° 0.35 0.12

2 010 0.35 0.0° 0.35 0.12

3 011 0.35 0.0° 0.35 0.12

4 100 0.35 0.0° 0.35 0.12

5 101 0.35 0.0° 0.35 0.12

6 110 0.35 0.0° 0.35 0.12

7 111 0.35 0.0° 0.35 0.12

Figure 4.24 The state table for the uniform probability distribution on eight outcomes
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in position 0 and the control qubit in position 2, the pairs highlighted in figure 4.27
will be swapped. Similarly, figure 4.28 shows a controlled X gate applied to a three-
qubit state with target qubit 2 and control qubit 1.
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Figure 4.25 The pairs of outcomes for 
applying a controlled single-qubit gate to a 
three-qubit system with target qubit 0 and 
control qubit 2
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Figure 4.26 The pairs of outcomes for applying a 
controlled single-qubit gate to a three-qubit system 
with target qubit 2 and control qubit 1

Out Bin Ampl Ampl bar

0 000 0.10 + 0.04i

1 001 0.07 + 0.07i

2 010 0.05 + 0.11i

3 011 0.01 + 0.16i

4 100 −0.13 + 0.35i

5 101 0.58 − 0.63i

6 110 0.19 − 0.09i

7 111 0.13 − 0.01i

Out Bin Ampl Ampl bar

0 000 0.10 + 0.04i

1 001 0.07 + 0.07i

2 010 0.05 + 0.11i

3 011 0.01 + 0.16i

4 100 0.58 − 0.63i

5 101 −0.13 + 0.35i

6 110 0.19 − 0.09i

7 111 0.13 − 0.01i

Out Bin Ampl Ampl bar

0 000 0.10 + 0.04i

1 001 0.07 + 0.07i

2 010 0.05 + 0.11i

3 011 0.01 + 0.16i

4 100 0.58 − 0.63i

5 101 −0.13 + 0.35i

6 110 0.13 − 0.01i

7 111 0.19 − 0.09i

Figure 4.27 Pair processing for applying a controlled X gate to a three-qubit state with target qubit 0 and control 
qubit 2
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4.4.1 Simulating controlled gate transformations in Python

To apply a controlled gate transformation with one control qubit in our simulator, we
will use the c_transform function defined in listing 4.5. We can use the same pair-
generation strategies as in transform, but we need to add a condition to check
whether the digits in the control qubit positions are 1 before we recombine the values
in a pair. For each possible outcome, we check if the target qubit in the binary form of
an outcome is 1 in a given position using the is_bit_set function. 

def is_bit_set(m, k):
    return m & (1 << k) != 0

def c_transform(state, c, t, gate):
    n = int(log2(len(state)))
    for (k0, k1) in filter(lambda p: is_bit_set(p[0], c),
                          pair_generator(n, t)):          
        process_pair(state, gate, k0, k1)    

Let’s use the example state in figure 4.27 and figure 4.28:

state = [(0.09858+0.03637j),
        (0.07478+0.06912j),
        (0.04852+0.10526j),
        (0.00641+0.16322j),
        (-0.12895+0.34953j),
        (0.58403-0.6318j),
        (0.18795-0.08665j),
        (0.12867-0.00506j)]

We can apply a controlled X gate to target qubit 2 with control qubit 1 using the
c_transform function:

c_transform(state, 1, 2, x)
print(state)

Listing 4.5 Applying controlled gate transformations to a state

Out Bin Ampl Ampl bar

0 000 0.10 + 0.04i

1 001 0.07 + 0.07i

2 010 0.05 + 0.11i

3 011 0.01 + 0.16i

4 100 −0.13 + 0.35i

5 101 0.58 − 0.63i

6 110 0.19 − 0.09i

7 111 0.13 − 0.01i

Out Bin Ampl Ampl bar

0 000 0.10 + 0.04i

1 001 0.07 + 0.07i

2 010 0.19 − 0.09i

3 011 0.01 + 0.16i

4 100 −0.13 + 0.35i

5 101 0.58 − 0.63i

6 110 0.05 + 0.11i

7 111 0.13 − 0.01i

Out Bin Ampl Ampl bar

0 000 0.10 + 0.04i

1 001 0.07 + 0.07i

2 010 0.19 − 0.09i

3 011 0.13 − 0.01i

4 100 −0.13 + 0.35i

5 101 0.58 − 0.63i

6 110 0.05 + 0.11i

7 111 0.01 + 0.16i

Figure 4.28 Pair processing for applying a controlled X gate to a three-qubit state with target qubit 2 and control 
qubit 1

Uses the same pair-generation
function as for regular transforms

but adds a filter to check if
the control position is 1

Once we get 
the right subset of 
pairs, we recombine 
the amplitudes 
according to 
the gate.
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The output is

[(0.09858+0.03637j),
 (0.07478+0.06912j),
 (0.18795-0.08665j),
 (0.12867-0.00506j),
 (-0.12895+0.34953j),
 (0.58403-0.6318j),
 (0.04852+0.10526j),
 (0.00641+0.16322j)]

We can see that in the resulting state, the amplitudes corresponding to outcomes 2
and 6 are swapped, and the amplitudes corresponding to outcomes 3 and 7 are
swapped. The resulting state matches that in figure 4.28. 

4.4.2 Simulating multicontrol gate transformations in Python

Controlled transformations can have one or more control qubits. If there is more
than one control qubit, the pairs are further limited to outcomes where each control
qubit position has the digit 1. 

 To simulate multicontrolled gate transformation in our simulator, we will use the
mc_transform function in the next listing. Similar to the c_transform function, we
get the pairs of outcomes that differ only in the target qubit position and then check
whether they have the value 1 in each of the control qubit positions. 

def mc_transform(state, cs, t, gate):
    assert not t in cs                 
    n = int(log2(len(state)))
    for (k0, k1) in filter(
            lambda p: all([is_bit_set(p[0], c) for c in cs]),
            pair_generator(n, t)):              
        process_pair(state, gate, k0, k1)   

Let’s apply a multicontrolled transformation to our example state:

state = [(0.09858+0.03637j), (0.07478+0.06912j), (0.04852+0.10526j),
         (0.00641+0.16322j), (-0.12895+0.34953j), (0.58403-0.6318j),
         (0.18795-0.08665j), (0.12867-0.00506j)]

If we apply a controlled transformation with two control qubits to a three-qubit state,
there will be only one pair to recombine. For example, if the target qubit is 0 and the
control qubits are 1 and 2, the pair selected will be '110' and '111' (outcomes 6 and 7):

mc_transform(state, [1, 2], 0, x)
print(state)

Listing 4.6 Applying multicontrolled gate transformations to a state

The target qubit cannot be the 
same as the control qubits.

Checks that the 
pairs have 1 in all 
the control qubit 
positionsRecombines the amplitudes

of the selected pairs
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The output is

[(0.09858+0.03637j),
 (0.07478+0.06912j),
 (0.04852+0.10526j),
 (0.00641+0.16322j),
 (-0.12895+0.34953j),
 (0.58403-0.6318j),
 (0.12867-0.00506j),
 (0.18795-0.08665j)]

We can see in this printed state that only the last two amplitudes (6 and 7) are swapped. 

4.5 Simulating quantum circuits
We have been using a functional programming style for the simulator, passing the state
to processing functions as an argument. However, when implementing a circuit, it is bet-
ter to wrap the functionality in an object that keeps the state as an attribute. The inter-
face of our simulator closely matches Qiskit’s interface. This is helpful because Qiskit
code can be used to run computations on many real quantum computers. This also
allows us to easily transition from simulation to running on a real computer. 

NOTE In the book’s repository, an additional Jupyter notebook in the chap-
ter folder contains code to run the examples from this chapter using a Qiskit
simulator backend.

4.5.1 Simulating measurement of multi-qubit states

As we know, each time we repeat a quantum computation, we get one outcome non-
deterministically. We know that the frequency, or counts, of each outcome will
reflect the probabilities determined by the amplitudes of the state. We can simulate
quantum measurement using the choices function from the built-in random Python
package. We will use the measure function, defined in the next listing, which takes
the state vector and a number of samples (shots). The function calculates the prob-
abilities using the amplitudes of the given state and returns a dictionary with the
counts of each outcome. 

from random import choices
from collections import Counter

def measure(state, shots):
    samples = choices(
       range(len(state)),
       [abs(state[k])**2 for k in range(len(state))],
       k=shots)
    counts = {}
    for (k, v) in Counter(samples).items():
        counts[k] = v
    return counts

Listing 4.7 Simulating measurement of a quantum state
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For example, let’s take the example state we used earlier:

state = [(0.09858+0.03637j), (0.07478+0.06912j), (0.04852+0.10526j),
         (0.00641+0.16322j), (-0.12895+0.34953j), (0.58403-0.6318j),
         (0.18795-0.08665j), (0.12867-0.00506j)]

Let’s use a list comprehension to look at the probability of each outcome:

probabilities = [[k, abs(state[k])**2] for k in range(len(state))]

for i in probabilities:
    print("probability of outcome", i[0], ": ", round(i[1], 3))

The printed output is

probability of outcome 0 :  0.011
probability of outcome 1 :  0.01
probability of outcome 2 :  0.013
probability of outcome 3 :  0.027
probability of outcome 4 :  0.139
probability of outcome 5 :  0.74
probability of outcome 6 :  0.043
probability of outcome 7 :  0.017

Now, let’s use our measure function to simulate the outcomes of 100 executions of the
computation that creates our example state:

samples = measure(state, 100)
print(samples)

The printed samples are

{4: 17, 5: 73, 7: 1, 6: 5, 3: 2, 1: 2}

The frequency of each outcome in the resulting samples reflects the outcome proba-
bilities. For example, outcome 5 has a probability of about 74%, and in our experi-
ment, 73 of the 100 samples were outcome 5, closely reflecting the expectation.

 On a real quantum computer, we get one measurement outcome after each execu-
tion of a computation. Figure 4.29 visualizes one measurement outcome being added
to the measurement counts from previous executions. In the figure, the outcome is 4,
so the amplitude of outcome 4 is 1 in the state table after measurement. 

4.5.2 Quantum registers and circuits in code

A quantum circuit consists of a sequence of transformations (quantum gates applied
to a target qubit). As we know, in addition to a target qubit, each transformation can
also have control qubits. We apply a circuit to a set of qubits. Sometimes it is conve-
nient to group qubits in registers that have their own index starting at 0. 
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The QuantumRegister class keeps track of a list of qubits. When an instance of the
class is created, we specify the size parameter, which is the number of qubits in that
register. The methods of the class allow for the right target and control qubits to be
selected when executing the transformations in a circuit. 

class QuantumRegister:
    def __init__(self, size, shift=0):
        self.size = size
        self.shift = shift

    def __getitem__(self, key):
        if isinstance(key, slice):
            return [self[ii] for ii in range(*key.indices(len(self)))]
        elif isinstance(key, int):
            if key < 0:
                key += len(self)
            assert(0 <= key < self.size)
            return self.shift + key

    def __len__(self):
        return self.size

    def __iter__(self):
        return list([self.shift + i for i in range(self.size)])

    def __reversed__(self):
        return list([self.shift + i for i in range(self.size)[::-1]])

In our simulator, we use the QuantumTransformation class for each transformation in
a circuit. Each transformation consists of a gate (a two-by-two list), a target qubit, and
optional control qubits (for controlled gate transformations). 

 

Listing 4.8 QuantumRegister class

Out Bin Ampl bar

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

Read

outcome

100

0 1 2 3 4 5 6 7
Counts

Figure 4.29 One measurement and the 
counts of previous measurement outcomes. 
In this example, the measurement outcome 
is 100, or 4.
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class QuantumTransformation:
    def __init__(self, gate, target, controls=[], name=None, arg=None):
        self.gate = gate
        self.target= target
        self.controls = controls
        self.name = name
        self.arg = arg

    def __str__(self):
        return rf'{self.name} {round(self.arg, 2) if self.arg is not None 

else ""} '\
               f'{self.controls} {self.target}'

    def __copy__(self):
        return QuantumTransformation(
            self.gate,
            self.target,
            self.controls,
            self.name,
            self.arg
        )

The QuantumCircuit class consists of two main attributes: a state variable and a list of
QuantumTransformation entries. When we create a new circuit, we pass one or more
registers of qubits. Then, we create an internal variable for the state amplitudes. The
QuantumCircuit class includes a method for each gate. In listing 4.10, we only include
the X gate, the Hadamard gate, the RY gate, the controlled X gate, and the multicon-
trolled X gate. 

 The complete implementation can be found in the companion code repository
(https://github.com/learnqc/code). When we call the run method on a circuit object,
we iterate through the transformations and apply the appropriate transform function
to the state. Note that after we apply the transformations, we set the transformations
attribute of the class to an empty list. 

class QuantumCircuit:
    def __init__(self, *args):
        bits = 0
        regs = []
        for register in args:
            register.shift = bits
            bits += register.size
            regs.append(register.size)

        self.state = init_state(bits)
        self.transformations = []
        self.regs = regs
        self.reports = {}

Listing 4.9 QuantumTransformation class

Listing 4.10 Partial implementation of the QuantumCircuit class

https://github.com/learnqc/code
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    def initialize(self, state):
        self.state = state

   def x(self, t):
       self.transformations.append(
           QuantumTransformation(x, t, [], 'x'))

   def h(self, t):
       self.transformations.append(
           QuantumTransformation(h, t, [], 'h'))

   def ry(self, theta, t):
       self.transformations.append(
           QuantumTransformation(ry(theta), t, [], 'ry', theta))

   def cx(self, c, t):
       self.transformations.append(
           QuantumTransformation(x, t, [c], 'x'))

   def mcx(self, cs, t):
       self.transformations.append(
           QuantumTransformation(x, t, cs, 'x'))

    def measure(self, shots=0):
        state = self.run()
        samples = measure(state, shots)
        return {'state vector': state, 'counts': samples}

    def run(self):
        for tr in self.transformations:
            cs = tr.controls
            if len(cs) == 0:
                transform(self.state, tr.target, tr.gate)
            elif len(cs) == 1:
                c_transform(self.state, cs[0], tr.target, tr.gate)
            else:
                mc_transform(self.state, cs, tr.target, tr.gate)
        self.transformations = []
        return self.state

In later chapters, we will continue to add methods to the QuantumCircuit class as
needed. 

NOTE As mentioned in chapter 2, we can run examples using our simulator
or Qiskit backends. In the code base, we added a run method to the Quantum-
Circuit class in Qiskit to make the syntax for running circuits identical.
Examples of running a circuit using a Qiskit simulator backend are in the
book’s companion repository. 

In chapter 3, we visualized a couple of example single-qubit quantum circuits with
circuit diagrams. Figure 4.30 shows a three-qubit circuit diagram; there is a line for
each qubit. Each transformation in the circuit is shown as a box on the respective
target qubit and labeled with the gate type. The third transformation in this circuit is
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a multicontrolled X gate: the target qubit is shown with an open circle, and the con-
trol qubits are shown with closed circles.

Let’s implement the simple circuit in figure 4.30 using our QuantumCircuit class. First
we initialize a state with three qubits. Then we apply each gate in the circuit to the
respective target (and control) qubits:

q = QuantumRegister(3)
qc = QuantumCircuit(q)

qc.h(q[0])
qc.h(q[1])
qc.mcx([q[0], q[1]], q[2])

When we call the run function, the respective transformations are applied to the state
object, and the transformed state is returned:

state = qc.run()

The resulting state table is shown in figure 4.31.

Hadamard gate applied
to target qubit 1

Multicontrolled X gate
applied to target
qubit 2 with control
qubits 0 and 1

Hadamard gate applied
to target qubit 0

Figure 4.30 A simple 
three-qubit circuit

Outcome Binary Amplitude Direction Magnitude Amplitude bar Probability Probability bar

0 000 0.50 0.0° 0.50 0.25

1 001 0.50 0.0° 0.50 0.25

2 010 0.50 0.0° 0.50 0.25

3 011 0.00 0.00 0.00

4 100 0.00 0.00 0.00

5 101 0.00 0.00 0.00

6 110 0.00 0.00 0.00

7 111 0.50 0.0° 0.50 0.25

Figure 4.31 The state table after applying our simple circuit
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We can simulate measurement on the resulting state with the measure function:

samples = measure(state, 1000)
print(samples)

The printed samples are

{2: 240, 7: 280, 0: 253, 1: 227}

As we expect, we see similar counts for the outcomes 0, 1, 2, and 7. 

4.5.3 Reimplementing the uniform distribution with registers 
and circuits

We can encode the uniform distribution in a quantum state by applying a Hadamard
gate to each qubit (starting with the default state). Figure 4.32 shows a circuit diagram
for encoding a uniform distribution in a three-qubit system. 

We can implement this circuit with our quantum simulator:

q = QuantumRegister(3)
qc = QuantumCircuit(q)

for i in range(len(q)):
    qc.h(q[i])

state = qc.run()

The resulting state table is shown in figure 4.33.

Figure 4.32 Circuit for encoding a uniform 
distribution in a three-qubit state

Outcome Binary Amplitude Direction Magnitude Amplitude bar Probability Probability bar

0 000 0.35 0.0° 0.35 0.12

1 001 0.35 0.0° 0.35 0.12

2 010 0.35 0.0° 0.35 0.12

3 011 0.35 0.0° 0.35 0.12

4 100 0.35 0.0° 0.35 0.12

5 101 0.35 0.0° 0.35 0.12

6 110 0.35 0.0° 0.35 0.12

7 111 0.35 0.0° 0.35 0.12

Figure 4.33 The state table for the uniform probability distribution on eight outcomes
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To create the circuit for encoding the uniform distribution in a state with more (or
fewer) qubits, we can use the uniform function defined next. 

def uniform(n):
    q = QuantumRegister(n)
    qc = QuantumCircuit(q)

    for i in range(len(q)):
        qc.h(q[i])

    return qc

4.5.4 Encoding the binomial distribution in a multi-qubit state

The binomial probability distribution models the number of successes of a binary event
for n trials. The probability of one outcome (success) is p, and the probability of the
other is 1 – p. The probability of getting k successes in a sequence of n events is 

.

 We can encode a binomial distribution in a quantum state using RY rotations. 

NOTE When modeling a probability p with an RY rotation, its angle θ is typi-
cally chosen so that p = cos2 θ/2, and therefore 1 – p = sin2 θ/2.

Given an angle θ, if we apply a RY(θ) rotation to each qubit in a system in its initial
state, all the amplitudes will be real, and each magnitude will depend on the number
of 1s in the binary representation of the corresponding outcome. In chapter 3, we saw
examples of the effect of applying the RY gate with various rotation angles. Figure 4.34
shows the circuit corresponding to θ = π/3 and a three-qubit state. 

We can implement this circuit with our quantum simulator:

q = QuantumRegister(3)
qc = QuantumCircuit(q)

for i in range(len(q)):
    qc.ry(pi/3, q[i])

state = qc.run()

Listing 4.11 Encoding the uniform distribution in a quantum state

Figure 4.34 The quantum circuit that applies an 
RY(π/3) rotation to all three qubits of the system
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The resulting state table is shown in figure 4.35.

Note that this is not exactly the binomial distribution, as the outcomes with the
same number of 1s (successes) are not grouped. This grouping needs to be done as
a post-measurement processing step. The result of the outcome grouping for θ = π/3
is in figure 4.36.

Generally, we can use the following code to apply an RY(θ) rotation to each of n qubits
in a system. 

def binomial(n, theta):
    q = QuantumRegister(n)
    qc = QuantumCircuit(q)

    for i in range(len(q)):   
        qc.ry(theta, q[i])

    return qc

Listing 4.12 Encoding the binomial distribution in a quantum state

Outcome Binary Probability Probability bar

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

Figure 4.35 The three-qubit state prepared by applying RY(π/3) gates to every qubit

# of 1s Outcome Binary Probability Probability bar

Figure 4.36 The binomial distributions for p = cos2 π/3

Iterates through each 
qubit in the register and 
applies an RY gate 
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The resulting state can be represented by the table comprehension in figure 4.37.

If we apply the circuit to a three-qubit state for a given θ, the resulting amplitudes are
those in figure 4.38. To get a true binomial distribution, we can group outcomes, as
shown in figure 4.39.

For three qubits and θ = π/2, we get the uniform distribution, as shown in figure 4.40.
The result of the outcome grouping for θ = π/2 is shown in figure 4.41.

Outcome Probability Figure 4.37 The state table for the circuit that applies an 
RY(θ) rotation to n qubits. Here, o(k) denotes the number of 
1s in the binary expansion of k.

Outcome Binary Probability

Figure 4.38 The general form of the three-
qubit state prepared by applying RY(θ ) to 
every qubit

# of 1s Outcome Binary Probability

Figure 4.39 The result of grouping 
outcomes with the same number of 1s

Outcome Binary Probability Probability bar

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

Figure 4.40 The uniform 
distribution prepared by 
applying RY(π/2) gates 
to every qubit
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NOTE This approach uses the same number of qubits as the number of trials.
This is sometimes referred to as a unary implementation, as opposed to a binary
implementation where the number of trials is a power of 2 (2n) for n qubits. A
unary implementation is very straightforward, as there are no complex gates,
but it is not as efficient as a binary implementation in terms of the number of
qubits needed to perform a certain number of trials. 

4.5.5 Implementing the Bell states

Earlier in this chapter, we used the Bell states as examples of nonproduct states. Now,
let’s look at how we can encode these states. 

THE FIRST BELL STATE

The first Bell state we looked at was a two-qubit state where only the outcomes '00' and
'11' are possible. We can use the following circuit to encode this state:

q = QuantumRegister(2)
qc = QuantumCircuit(q)

qc.h(q[0])
qc.cx(q[0], q[1])

state = qc.run()

The resulting state table is shown in figure 4.42. 

THE THIRD BELL STATE

In this two-qubit state, only the outcomes '01' and '10' are possible. We can encode it
with the following code:

# of 1s Outcome Binary Probability Probability bar

Figure 4.41 The binomial distributions for p = cos2 π/2

Outcome Binary Amplitude Direction Magnitude Amplitude bar Probability Probability bar

0 00 0.71 0.0° 0.71 0.50

1 01 0.00 0.00 0.00

2 10 0.00 0.00 0.00

3 11 0.71 0.0° 0.71 0.50

Figure 4.42 The first Bell state table
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q = QuantumRegister(2)
qc = QuantumCircuit(q)

qc.h(q[0])
qc.x(q[1])
qc.cx(q[0], q[1])

state = qc.run()

The resulting state table is shown in figure 4.43.

Exercise 4.2
Implement circuits that encode the remaining two Bell states. 

Exercise 4.3
The geometric distribution models the number of times a process must be repeated
before a successful outcome is achieved. If the probability of success is p, then the
probability of having k failures before the first success is (1 – p)kp. 

Verify that the following circuit

q = QuantumRegister(n)
qc = QuantumCircuit(q)

for i in range(len(q)):
    qc.ry(theta, q[i])

for i in range(len(q) - 1):
    qc.cry(pi - theta, q[i], q[i+1])

z = qc.run()

prepares a quantum state z with the following properties:

1 The amplitudes in the state z at indices 2n – 2k for 0 ≤ k < n (which start with

n – k digits of 1, and end with k digits of 0) are  and the

Outcome Binary Amplitude Direction Magnitude Amplitude bar Probability Probability bar

0 00 0.00 0.00 0.00

1 01 0.71 0.0° 0.71 0.50

2 10 0.71 0.0° 0.71 0.50

3 11 0.00 0.00 0.00

Figure 4.43 The third Bell state table
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Summary
 A quantum system made up of n qubits can be represented by an array of 2n

complex numbers, where the sum of squared magnitudes of the complex num-
bers is 1.

 State tables provide a visual way of understanding quantum states, connecting
the mathematical and programmatic models.

 A quantum transformation applies a quantum gate to one qubit (the target
qubit). It can also be controlled by using other qubits as control qubits.

 A quantum transformation recombines pairs of amplitudes determined by the
target and control qubits according to the specific gate formula.

 Quantum circuits use quantum transformations to create useful states and
probability distributions.

 Qubits can be organized into registers to make it easier to represent logical
variables.

 We can write a simple Python simulator to simulate the basic principles of quan-
tum computing. 

(continued)

probabilities: , matching the geomet-

ric distribution probabilities.
1 Amplitude z0 is the “leftover” amplitude accounting for the infinite tail of the

geometric distribution. 
2 All other amplitudes are 0.
3 The state table representation for n = 3 and θ = 0.8π matches the following

state table:

Outcome Binary Amplitude Amplitude bar

0 000 0.0295

1 001 0.0000

2 010 0.0000

3 011 0.0000

4 100 0.0908

5 101 0.0000

6 110 0.2939

7 111 0.9511

The state prepared using the 
circuit created with the previous 
function for n = 3 and θ = 0.8π



Part 2

Fundamental
algorithms and patterns

With a solid grasp of quantum states and operations, you’re ready to
implement and apply fundamental quantum algorithms and computing pat-
terns. These aren’t just theoretical constructs—they’re the building blocks used
in real quantum applications, including search and optimization problems.

 Chapter 5 introduces quantum oracles and their role in algorithm design.
Chapter 6 shows how oracles enable Grover’s search algorithm, a quantum
approach that quadratically speeds up unstructured search problems. Chapter 7
develops your understanding of the quantum Fourier transform, and Chapter 8
puts it to work in various applications. Chapter 9 brings these concepts together
with quantum phase estimation and quantum counting, completing your toolkit
of fundamental quantum algorithms.





Selecting outcomes
with quantum oracles
In chapter 1, we discussed three main patterns of quantum computations:

 Sampling from probability distributions
 Searching for specific outcomes
 Estimating the probability of specific outcomes

We explored several examples of the first pattern: sampling from probability distri-
butions encoded into quantum states. In this chapter, we will learn how to identify
specific outcomes of a quantum computation. This is an essential component for
implementing solutions to problems that involve searching for certain outcomes or
estimating the probabilities of certain outcomes.

 Depending on the problem context, the possible outcomes of a quantum
computation may represent items in an unstructured database, choices in a binary

This chapter covers
 Specifying “good” outcomes of quantum 

computations with quantum oracles

 Implementing phase and bit quantum oracles

 Converting between phase and bit quantum 
oracles
111
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optimization problem, or the possible prices of a stock at a specific point in time. To
search for an item in a database, find an optimal selection, or estimate the probability
of a price, we need to specify desired outcomes in each context. To specify desired
outcomes, we will use a quantum oracle. An oracle is a quantum circuit that recog-
nizes desired outcomes and “tags” or marks them in some way.

 You may be familiar with using SQL queries to retrieve data from a database. In a
SQL query, the WHERE clause can be used to filter for records that fulfill a specific con-
dition. You can think of an oracle like the WHERE clause in a SQL query: it identifies
data entries that satisfy a condition. 

 In a typical database search, specifying the WHERE clause is easy, but the actual
search performed by the database engine may be time-consuming—for example, if a
full table scan is required in a large database. In a quantum search, the situation is
reversed. Implementing an efficient oracle is typically hard, whereas the actual search
is easy with quantum measurement. This comparison is shown in table 5.1. 

In this chapter, we will introduce two types of oracles and look at examples of each.
We will learn how to implement these oracles using our Python simulator so that we
can use them in applications in future chapters (see figure 5.1).

Table 5.1 Comparison of the difficulty of classical and quantum approaches to unstructured search

Search Specification Search Execution

Classical Easy (e.g., a SQL WHERE clause) Typically hard (table scan)

Quantum Hard (efficient oracles) Easy (with Grover’s algorithm)

Looking ahead: Oracles are everywhere in quantum computing
In this chapter, we will cover how quantum oracles work and how to implement them.
As you design and implement quantum solutions, you will need quantum oracles.

Quantum oracles perform a critical function in quantum computing. Oracles are
required to implement Grover’s algorithm, which we will cover in the next chapter.
Oracles (and Grover’s algorithm) are used in various quantum computing solu-
tions, including optimization problems and quantum machine learning algorithms.
Oracles are used for searching and sampling within many quantum algorithms.
Therefore, designing efficient quantum oracles is essential in order to develop
quantum solutions that outperform their classical counterparts.

For example, when searching for the minimum or maximum values of a function, it
would be ideal, but virtually impossible, to implement an oracle selecting those val-
ues. Instead, we can use a simple oracle that searches for negative (or non-negative)
values and incrementally reduce the search space until we reach the desired values.
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5.1 Describing outcomes with quantum oracles: Intuition 
and classical implementation
As mentioned, in a quantum computation, we can use an oracle to recognize certain
outcomes and “tag” them in some way. We will refer to the outcomes we want to recog-
nize as “good” outcomes and all the others as “bad” outcomes. There are different
ways an oracle can identify or tag an outcome. The most common tagging effects are
as follows:

 The amplitudes of the good outcomes are rotated by 180°. Oracles that do this
are called phase oracles. 

 Outcomes are entangled with an additional qubit in such a way that the good
ones are associated with its measurement of 1 and the bad ones with its mea-
surement of 0. Oracles that do this are called bit oracles. 

The implementation of an oracle is independent of how it is used (hence the name
“oracle”). Note that a phase oracle is straightforward to implement on top of a bit ora-
cle, because the good outcomes are already tagged by the bit oracle. Let’s look at
phase oracles first.

5.1.1 Phase oracles

After the phase oracle is applied, the amplitudes of the good outcomes are rotated by
180°. In figure 5.2, we denote good outcomes with g and bad outcomes with b. Rotat-
ing a complex number by 180° is the same as multiplying it by –1. 

Quantum gates

Quantum oracles
(bit or phase)

Quantum state

Applications
(Fibonacci numbers)

Figure 5.1 A dependency diagram of 
concepts introduced in this chapter. Oracles 
are also an essential building block of Grover’s 
algorithm, covered in the next chapter.

Outcome Amplitude Outcome Amplitude

b

g

b

g

b

g

b

g g

Figure 5.2 The effect of a phase oracle on the amplitudes of a state with 
good outcomes g and bad outcomes b
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The good outcomes can be specified classically with a predicate that returns True for a
good outcome and False otherwise. For example, in a scenario with one good out-
come, 3, we can define the following predicate:

predicate = lambda k: True if k == 3 else False

Say we have eight possible outcomes (n = 3 qubits). We can use the predicate func-
tion to list the good outcomes:

n = 3
print(f'\nGood outcomes: {[k for k in range(2**n) if predicate(k)]}')

The output is

Good outcomes: [3]

We can use this predicate to classically simulate an oracle that takes any state and mul-
tiplies the amplitudes of the good outcomes by –1:

def classical_phase_oracle(state, predicate):
    for item in range(len(state)):
        if predicate(item):
            state[item] *= -1

Let’s start with a state with n = 3 qubits in a uniform superposition where the magni-
tudes of all amplitudes are equal:

from math import sqrt

n = 3
state = [1/sqrt(2**n) for _ in range(2**n)]

We can apply the classical phase oracle to this state with the following code:

classical_phase_oracle(state, predicate)

The state tables before and after the oracle is applied are illustrated in figure 5.3. 

Out Bin Ampl Dir Mag

0 000 0.35 0.0° 0.35

1 001 0.35 0.0° 0.35

2 010 0.35 0.0° 0.35

3 011 0.35 0.0° 0.35

4 100 0.35 0.0° 0.35

5 101 0.35 0.0° 0.35

6 110 0.35 0.0° 0.35

7 111 0.35 0.0° 0.35

Out Bin Ampl Dir Mag

0 000 0.35 0.0° 0.35

1 001 0.35 0.0° 0.35

2 010 0.35 0.0° 0.35

3 011 −0.35 180.0° 0.35

4 100 0.35 0.0° 0.35

5 101 0.35 0.0° 0.35

6 110 0.35 0.0° 0.35

7 111 0.35 0.0° 0.35

Ampl barAmpl bar

Figure 5.3 The effect of a phase oracle on a three-qubit state prepared with amplitudes in equal 
superposition and a single good outcome, 3
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In the second state table in figure 5.3, the phase of the amplitude of the good out-
come is rotated by 180°. 

5.1.2 Bit oracles

Now let’s look at bit oracles. A bit oracle entangles the outcomes with an additional
qubit, which we will call the tag bit. In figure 5.4, the good outcomes (denoted by g)
will have a nonzero probability when the tag bit has the value 1. The tag bit can then
be used to find the good outcomes. 

The function classical_bit_oracle is a classical implementation of a bit oracle.
Remember, when a qubit is added to a quantum system, the digit in the binary out-
come corresponding to the last qubit added is the leftmost digit. If we add a tag bit to
an n-qubit state representing N = 2n items, there will be 2n+1 = 2N possible outcomes.
The first N outcomes will have 0 in the tag bit position, and the second N outcomes
will have 1 in the tag bit position. Therefore, we can find the amplitude correspond-
ing to the item with 1 in the tag bit position by adding N to the index of the item with
0 in the tag bit position:

def classical_bit_oracle(state, predicate):
    N = len(state)
    state = state + [0 for _ in range(N)] 
    for item in range(N):
        if predicate(item):               
            state[N + item] = state[item] 

Exercise 5.1
Start with n = 4 qubits in a uniform superposition:

n = 4
state = [1/sqrt(2**n) for _ in range(2**n)]

Use the classical predicate definition for good outcomes 2 and 9 to create a classical
phase oracle, apply it to the state, and check whether the amplitudes of the good
outcomes are rotated by 180°:

predicate = lambda k: True if k in [2, 9] else False

Outcome Amplitude Tag bit Outcome Amplitude

b

g

b

g

b

g

b

g

Figure 5.4 The effect of a bit oracle on the amplitudes of a state with good outcomes 
g and bad outcomes b

Adding a qubit doubles the number of 
possible outcomes and therefore the 
number of amplitudes.

Finds the amplitude corresponding to the 
outcome with 1 in the tag bit position by 
adding N to the amplitude index
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            state[item] = 0
    return state

Let’s apply this oracle to a state with n = 3 qubits, where 3 is the good state:

predicate = lambda k: True if k == 3 else False

n = 3
state = [1/sqrt(2**n) for _ in range(2**n)]

tag_state = classical_bit_oracle(state, predicate)

In the second state table in figure 5.5, the good outcome is the only outcome with 1
in the tag bit position and a corresponding amplitude whose magnitude is greater
than zero.

We can also apply this oracle to a random state generated using our generate_state
function:

from util import generate_state

n = 3
state = generate_state(n, seed=777)
state = classical_bit_oracle(state, predicate)

In the state tables in figure 5.6, we can see that the amplitude corresponding to the
good outcome with 1 in the tag bit position has a nonzero magnitude, and the ampli-
tudes corresponding to the bad outcomes with 1 in the tag bit position are zero. 

Out Bin Ampl Dir Mag Ampl bar

0 000 0.35 0.0° 0.35

1 001 0.35 0.0° 0.35

2 010 0.35 0.0° 0.35

3 011 0.35 0.0° 0.35

4 100 0.35 0.0° 0.35

5 101 0.35 0.0° 0.35

6 110 0.35 0.0° 0.35

7 111 0.35 0.0° 0.35

Out Bin Ampl Dir Mag Ampl bar

0 0000 0.35 0.0° 0.35

1 0001 0.35 0.0° 0.35

2 0010 0.35 0.0° 0.35

3 0011 0 0

4 0100 0.35 0.0° 0.35

5 0101 0.35 0.0° 0.35

6 0110 0.35 0.0° 0.35

7 0111 0.35 0.0° 0.35

8 1000 0 0

9 1001 0 0

10 1010 0 0

11 1011 0.35 0.0° 0.35

12 1100 0 0

13 1101 0 0

14 1110 0 0

15 1111 0 0

Figure 5.5 The effect of a bit oracle on a three-qubit state prepared with amplitudes in equal superposition and 
a single good outcome, 3
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Now that we understand how these two types of oracles work, let’s look at quantum cir-
cuits that implement oracles. 

5.2 Quantum implementation of oracles
The classical implementation of phase oracles and bit oracles is helpful for understand-
ing their effects. In this section, we will look at quantum implementations of oracles. 

5.2.1 Creating quantum circuits from building blocks

As we work with more and more complex circuits, it is essential to be able to com-
bine reusable circuits the same way we do gates. In listing 5.1, we introduce a
method of the QuantumCircuit class called append that allows us to combine cir-
cuits. The implementation applies the individual gates in the circuit to a register in
another circuit with the same number of qubits. 

def append(self, circuit, reg):
    assert(reg.size == sum(circuit.regs))
    for tr in circuit.transformations:
        self.transformations.append(
            QuantumTransformation(
                tr.gate,
                reg.shift + tr.target,
                tr.controls,

Exercise 5.2
Create a random state with n = 4 qubits, and apply a bit oracle for good outcome 11.

Listing 5.1 Method to append a quantum circuit to a register in another circuit instance

Out Bin Ampl Dir Mag Ampl bar

0 000 −0.17 − 0.16i −136.0° 0.23

1 001 −0.25 + 0.21i 140.3° 0.32

2 010 −0.07 + 0.29i 104.0° 0.29

3 011 0.25 − 0.01i −2.5° 0.25

4 100 0.25 − 0.12i −25.5° 0.28

5 101 −0.15 − 0.39i −110.9° 0.42

6 110 0.36 − 0.30i −40.3° 0.47

7 111 0.37 + 0.28i 37.3° 0.46

Out Bin Ampl Dir Mag Ampl bar

0 0000 −0.17 − 0.16i −136.0° 0.23

1 0001 −0.25 + 0.21i 140.3° 0.32

2 0010 −0.07 + 0.29i 104.0° 0.29

3 0011 0 0

4 0100 0.25 − 0.12i −25.5° 0.28

5 0101 −0.15 − 0.39i −110.9° 0.42

6 0110 0.36 − 0.30i −40.3° 0.47

7 0111 0.37 + 0.28i 37.3° 0.46

8 1000 0 0

9 1001 0 0

10 1010 0 0

11 1011 0.25 − 0.01i −2.5° 0.25

12 1100 0 0

13 1101 0 0

14 1110 0 0

15 1111 0 0

Figure 5.6 The effect of a bit oracle on a random three-qubit state with a single good outcome, 3
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                tr.name,
                tr.arg
            )
        )

For example, let’s create a three-qubit register and a circuit with one X gate applied to
target qubit 0:

from sim_circuit import *

n = 3
q = QuantumRegister(n)
qc = QuantumCircuit(q)
qc.x(0)

Next, we will use the uniform function from chapter 4. This function creates a circuit
for encoding the uniform distribution in a state with n qubits:

def uniform(n):
    q = QuantumRegister(n)
    qc = QuantumCircuit(q)

    for i in range(len(q)):
        qc.h(q[i])

    return qc

We can apply the circuit defined by the function uniform to our three-qubit register
using the append method:

n = 3
uniform_qc = uniform(n)
qc.append(uniform_qc, q) 

We can also append a circuit that is controlled on qubits in other registers with the
c_append method defined in the next listing. The implementation adds the additional
control qubits to the existing control qubits (if any) of each gate in the circuit to be
appended. 

def c_append(self, circuit, c, reg):
    assert(c not in range(reg.shift, reg.shift + reg.size))
    for tr in circuit.transformations:
        self.transformations.append(
            QuantumTransformation(
                tr.gate,
                reg.shift + tr.target,
                [c] + [reg.shift + t for t in tr.controls],
                tr.name,
                tr.arg
            )
        )

Listing 5.2 Method to append a circuit with control qubits

Applies the circuit 
to the register q
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5.2.2 Phase oracle

Using a list of good outcomes items, we can use the function in listing 5.3 to create a
circuit that multiplies the amplitudes corresponding to the good outcomes by –1. 

NOTE Following the convention in Qiskit, the mcp method applies a multi-
controlled phase gate transformation. 

Unitary transformations
The action of a circuit on m qubits is mathematically represented by the action of a
matrix with 2m rows and 2m columns. The matrix has to preserve the squared magni-
tudes of the set of m amplitudes it acts on. Such matrices are a more general form
of the two-by-two matrices that represent single-qubit gates. And just like single-qubit
gates changing all amplitudes in pairs, an m-qubit unitary changes all amplitudes in
groups of 2m.

We can use a butterfly-style diagram similar to the one we use for pairs to indicate
that groups of amplitudes are recombined using a unitary transformation.

We can also use the circular version of the diagram that shows how the grouping of
amplitudes (outcomes) is done. Each arc in the diagram represents a group.

Our simulator includes support for appending multi-qubit circuits represented by
unitaries. 

Butterfly-style diagram for the action of two-qubit 
transformation on a group of four amplitudes

Circular butterfly diagrams showing groups of four outcomes whose amplitudes 
are transformed by a two-qubit transformation

7

65

4

3

2 1

0

Targets: 0, 1

7

65

4

3

2 1

0

Targets: 1, 2



120 CHAPTER 5 Selecting outcomes with quantum oracles
from math import pi

def is_bit_not_set(m, k):
    return not (m & (1 << k))

def phase_oracle_match(n, items):
    q = QuantumRegister(n)
    qc = QuantumCircuit(q)

    for m in items:
        for i in range(n):
            if is_bit_not_set(m, i):
                qc.x(q[i])

        qc.mcp(pi, [q[i] for i in range(len(q) - 1)], q[len(q) - 1]) 
        for i in range(n):
            if is_bit_not_set(m, i):
                qc.x(q[i])
    return qc

Let’s use this function to create a phase oracle circuit for n = 3 qubits and a single
good outcome, 3:

n = 3
items = [3]

oracle_circuit = phase_oracle_match(n, items)

This oracle circuit is illustrated in figure 5.7.

We can create a state in equal superposition (uniform distribution) by applying a Had-
amard gate to each qubit:

q = QuantumRegister(n)
qc = QuantumCircuit(q)

for i in range(n):
    qc.h(q[i])

Listing 5.3 Function to create a phase oracle circuit

Multi-controlled
transformation

Figure 5.7 The phase oracle circuit for n = 3 
qubits and a single good outcome, 3
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Then we can apply the oracle circuit:

qc.append(oracle_circuit, QuantumRegister(n))

The circuit created is illustrated in figure 5.8.

Let’s create an oracle for n = 3 qubits and associated with good outcomes 1, 3, and 5:

n = 3
items = [1, 3, 5]

oracle_circuit = phase_oracle_match(n, items)

Let’s create a circuit that applies a Hadamard gate to each qubit and then applies the
oracle defined above:

q = QuantumRegister(n)
qc = QuantumCircuit(q)

for i in range(n):
    qc.h(q[i])

qc.append(oracle_circuit, QuantumRegister(n))

The circuit and the resulting state are shown in figure 5.9. In the second state table
in the figure, the amplitudes corresponding to each of the three good outcomes
have been rotated by 180°. 

 
 
 
 
 

Figure 5.8 The state tables before and after applying a circuit that applies a Hadamard gate 
to each of n = 3 qubits followed by the phase oracle for a single good outcome, 3

Out Bin Dir Ampl bar
0 000 0.0°
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Out Bin Dir Ampl bar
0 000 0.0°
1 001 0.0°
2 010 0.0°
3 011 180.0°
4 100 0.0°
5 101 0.0°
6 110 0.0°
7 111 0.0°
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5.2.3 Bit oracle

The function bit_oracle_match in listing 5.4 creates a bit oracle circuit for a state
with n qubits and a list of good outcomes items. 

NOTE We use an additional qubit, often called an ancilla or ancillary qubit. 

def bit_oracle_match(n, items):
    q = QuantumRegister(n)
    a = QuantumRegister(1)
    qc = QuantumCircuit(q, a)

    for m in items:
        for i in range(n):
            if is_bit_not_set(m, i):
                qc.x(q[i])

        qc.mcx([q[i] for i in range(len(q))], a[0]) 

        for i in range(n):
            if is_bit_not_set(m, i):
                qc.x(q[i])
    return qc

Let’s create the bit oracle circuit and apply it to our familiar example where a state
with n = 3 qubits is prepared using Hadamard gates and the good item is 3.

n = 3
items = [3]

oracle_circuit = bit_oracle_match(n, items)

q = QuantumRegister(n)
a = QuantumRegister(1)
qc = QuantumCircuit(q, a)

for i in range(n):
    qc.h(q[i])

qc.append(oracle_circuit, QuantumRegister(n + 1)) 

Listing 5.4 Function to create a bit oracle circuit

Figure 5.9 The state tables before and after applying a Hadamard gate to each of n = 3 qubits followed by the 
phase oracle for good outcomes 1, 3, and 5

Out Bin Dir Ampl bar
0 000 0.0°
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Out Bin Dir Ampl bar
0 000 0.0°
1 001 180.0°
2 010 0.0°
3 011 180.0°
4 100 0.0°
5 101 180.0°
6 110 0.0°
7 111 0.0°

Multi-controlled 
transformation

The circuit created by 
bit_oracle_match adds an 
ancilla qubit, so we need 
to pass a register with 
n+1 qubits when we 
append the circuit.
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The circuit created and the state tables before and after its application are illus-
trated in figure 5.10.

Next, let’s create a bit oracle for the same state with three good outcomes:

n = 3
items = [1, 3, 5]

oracle_circuit = bit_oracle_match(n, items)

q = QuantumRegister(n)
a = QuantumRegister(1)
qc = QuantumCircuit(q, a)

for i in range(n):
    qc.h(q[i])

qc.append(oracle_circuit, QuantumRegister(n+1))

The oracle circuit created and the state tables before and after its application are illus-
trated in figure 5.11. In the second state table in the figure, the outcomes with 1 in the
tag bit position (located in the lower half of the state table) have amplitudes with a mag-
nitude of 0 if they correspond to a bad outcome and a magnitude greater than 0 if they
correspond to a good outcome. 

 

Figure 5.10 The state tables before and after applying a Hadamard gate to each of n = 3 
qubits followed by a bit oracle for a single good outcome 3

Out Dir Ampl bar

0 0.0°

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Out Dir Ampl bar

0 0.0°

1 0.0°

2 0.0°

3

4 0.0°

5 0.0°

6 0.0°

7 0.0°

8

9

10

11 0.0°

12

13

14

15
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5.3 Converting between phase and bit quantum oracles
In some cases, we may want to create an oracle using an oracle of a different type.
In this section, we will learn how to convert from a phase oracle to a bit oracle and
vice versa. 

5.3.1 Converting a phase oracle to a bit oracle

If we have a phase oracle circuit for a set of good outcomes and n qubits, we can create
a bit oracle circuit. The circuit diagram in figure 5.12 illustrates the circuit to create a
bit oracle using a phase oracle circuit OP. 

If we have a phase oracle circuit defined using the QuantumCircuit class in our simula-
tor, we can use it to implement the circuit in figure 5.12 using the following function:

def phase_to_bit_oracle(oracle_circuit):
    n = sum(oracle_circuit.regs) 
    q = QuantumRegister(n)
    a = QuantumRegister(1)
    qc = QuantumCircuit(q, a)
    qc.h(a[0])

Figure 5.11 The state tables before and after applying a Hadamard gate to each of n = 3 qubits followed 
by the phase oracle for good outcomes 1, 3, and 5

Out Dir Ampl bar

0 0.0°

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Out Dir Ampl bar

0 0.0°

1

2 0.0°

3

4 0.0°

5

6 0.0°

7 0.0°

8

9 0.0°

10

11 0.0°

12

13 0.0°

14

15

Figure 5.12 Circuit diagram of a bit oracle using 
the corresponding phase oracle OP

Gets the number of 
qubits used for the 
phase oracle
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    qc.c_append(oracle_circuit, a[0], q) 
    qc.h(a[0])

    return qc

For example, let’s create the phase oracle circuit for n = 3 qubits and good outcomes 1, 3,
and 5:

n = 3
items = [1, 3, 5]
oracle_circuit = phase_oracle_match(n, items)

This phase oracle circuit is illustrated in figure 5.13. The bit oracle circuit created
using this phase oracle circuit is shown in figure 5.14.

In figure 5.14, each gate in the phase oracle circuit OP is applied with the ancilla
qubit as an additional control qubit. Remember, we can use the c_append method of
our QuantumCircuit class to apply a circuit to another circuit with an additional con-
trol qubit. 

 As we did in the first section, let’s use the generate_state function to generate a
random state with n = 3 qubits. This time, we will add an ancilla qubit:

state = generate_state(n, seed=777) + [0 for _ in range(2**n)]

Applies the phase oracle 
circuit controlled on the 
ancilla qubit

Figure 5.13 Circuit diagram of the phase oracle OP for n = 3 qubits and 
good outcomes 1, 3, and 5

Figure 5.14 Circuit diagram of the bit oracle created using the phase oracle OP for n = 3 qubits and good 
outcomes 1, 3, and 5 in figure 5.13
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Now, let’s create a circuit with the random state above as the prepared state and then
append the converted oracle to the circuit instance:

q = QuantumRegister(n)
a = QuantumRegister(1)

qc = QuantumCircuit(q, a)
qc.initialize(state.copy())

qc.append(phase_to_bit_oracle(oracle_circuit), QuantumRegister(n+1))

Figure 5.15 illustrates applying this converted oracle to the random state. In the sec-
ond state table in the figure, we can see that the applied circuit acted as a bit oracle. 

5.3.2 Converting a bit oracle to a phase oracle

If we have the bit oracle circuit for a set of good outcomes and n qubits, we can create
a circuit that will apply the phase oracle. The circuit diagram in figure 5.16 illustrates
the circuit to create a phase oracle using a bit oracle circuit OB. 

 

Initializing any state
In this chapter, we will add the initialize method to the QuantumCircuit class,
which allows us to set the state in a QuantumCircuit class instance:

def initialize(self, state):
    self.state = state

Figure 5.15 The state tables before and after applying the bit oracle in figure 5.14 to a random n = 3 qubit state

Out Dir Ampl bar
0 −136.0°
1 140.3°
2 104.0°
3 −2.5°
4 −25.5°
5 −110.9°
6 −40.3°
7 37.3°
8
9

10
11
12
13
14
15

Out Dir Ampl bar
0 −136.0°
1
2 104.0°
3
4 −25.5°
5
6 −40.3°
7 37.3°
8
9 140.3°

10
11 −2.5°
12
13 −110.9°
14
15
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We can use the following function to create a circuit that will act as a phase oracle,
where the parameter oracle_circuit is a bit oracle:

def bit_to_phase_oracle(oracle_circuit):
    n = sum(oracle_circuit.regs)
    q = QuantumRegister(n)
    qc = QuantumCircuit(q)
    qc.append(oracle_circuit, q)
    qc.p(pi, q[len(q)-1])
    qc.append(oracle_circuit, q)

    return qc

Let’s create the bit oracle circuit for our example problem where n = 3 qubits and the
good outcomes are 1, 3, and 5:

n = 3
items = [1, 3, 5]
oracle_circuit = bit_oracle_match(n, items)

Remember, this circuit will include an ancilla qubit.
 The bit oracle circuit is illustrated in figure 5.17. The phase oracle circuit created

using the bit oracle circuit in figure 5.17 is shown in figure 5.18.

Figure 5.16 Circuit diagram of a phase oracle 
using the corresponding bit oracle OB

Figure 5.17 Circuit 
diagram of a bit oracle OB 
for n = 3 qubits and good 
outcomes 1, 3, and 5

Figure 5.18 Circuit diagram of a phase oracle created using a bit oracle OB for n = 3 qubits and good outcomes 
1, 3, and 5 in figure 5.17
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Let’s implement the same example using a phase oracle created from a bit oracle:

n = 3
items = [1, 3, 5]
oracle_circuit = bit_oracle_match(n, items)

state = generate_state(n, seed=777) + [0 for _ in range(2**n)]

q = QuantumRegister(n)
a = QuantumRegister(1)
qc = QuantumCircuit(q, a)

qc.initialize(state.copy())

qc.append(bit_to_phase_oracle(oracle_circuit), QuantumRegister(n+1))

Figure 5.19 visualizes this example. We can see that the applied circuit acts as a phase
oracle, and the amplitudes corresponding to the good outcomes are rotated by 180°. 

5.4 Fibonacci numbers and the golden ratio with good 
outcomes
As we will see in the next chapter, we use oracles to increase the probability of good
outcomes and decrease the probability of bad outcomes. In this section, we will
look at an outcome selection example related to Fibonacci numbers and the golden
ratio, where we make the bad outcomes impossible (probability 0). 

 We know that a quantum computation on n > 0 qubits has 2n outcomes. Let’s define
the good outcomes as those whose binary representation does not contain two consecu-
tive 1s. We will call this set Gn, and we denote its size by |Gn|. If n = 1, then |G1| = 2
because binary strings with one digit do not contain consecutive 1s. If n = 2, then |G2| = 3
because only one out of the four possible binary strings has two consecutive 1s (11).

Figure 5.19 The state tables before and after applying the phase oracle in figure 5.18 to a random n = 3 qubit 
state

Out Dir Ampl bar
0 −136.0°
1 140.3°
2 104.0°
3 −2.5°
4 −25.5°
5 −110.9°
6 −40.3°
7 37.3°
8
9

10
11
12
13
14
15

Out Dir Ampl bar
0 −136.0°
1 −39.7°
2 104.0°
3 177.5°
4 −25.5°
5 69.1°
6 −40.3°
7 37.3°
8
9

10
11
12
13
14
15
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 For n > 2, the number of good outcomes is

To understand this, we will consider the following two cases:

1 If the first digit of a binary string in Gn is 0, the binary string made up from its
last n – 1 digits needs to be in Gn–1.

2 If the first digit of a binary string in Gn is 1, the digit after it must be 0, and the
binary string made up from its last n – 2 digits needs to be in Gn–2.

You may recognize this pattern of a sequence of numbers where each number is the
sum of the two before it. It matches the Fibonacci sequence. 

Example
For n = 3, the set of good outcomes is

There are three binary strings in the set of good outcomes G3 with the first digit 0:
000, 001, and 010. The binary string made up of the last n – 1 = 2 digits in each of
these binary strings (00, 01, 10) is in the set

There are two binary strings in G3 with the first digit 1: 100 and 101. The binary string
made up of the last (n – 2 = 1) digit is in the set

Exercise 5.3
Show that the two properties described in the previous example are true for the set
of good outcomes G4.

Fibonacci numbers
We can compute the nth number in the Fibonacci sequence (denoted by Fn) using the
following recursive Python function:

def recursive_fib(n):
    assert n >= 0
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For n qubits, the number of good outcomes—outcomes without consecutive 1s—is the
Fibonacci number Fn+2 (|Gn| = Fn+2). We can create a circuit that identifies the good
outcomes and makes the bad outcomes impossible. The function fib_circuit creates
this circuit for a given number of qubits n > 0:

from math import asin

def fib_circuit(n):
    theta = 2*asin((sqrt(5) - 1)/2)

    q = QuantumRegister(n)
    qc = QuantumCircuit(q)

    for i in range(n):
        qc.ry(theta, q[i])

    for i in range(n - 1):
        qc.cry(-theta, q[i], q[i + 1])

    return qc

Let’s create the circuit for one qubit:

qc = fib_circuit(1)

(continued)
if n <= 1:
        return n
    else:
        return recursive_fib(n - 1) + recursive_fib(n - 2)

We can use the recursive function to create a list of the first 10 Fibonacci numbers:

[recursive_fib(n) for n in range(10)]

The output is

[0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

As the Fibonacci numbers get larger, the ratio between consecutive numbers
approaches the golden ratio. The golden ratio is the irrational number

and is denoted by ϕ.
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In the state prepared by this circuit, shown in figure 5.20, we can see that both out-
comes are identified as good outcomes (|G1| = F3 = 2).

If n = 2, there are |G2| = F4 = 3 good outcomes. Figure 5.21 shows the state created
with n = 2 qubits.

For a given number of qubits n, we can see that

 There are Fn+1 good outcomes with the first binary digit 0 (top half of the state
table), and the amplitudes corresponding to these outcomes are all equal.

 There are Fn good outcomes with the first binary digit 1 (bottom half of the
state table), and the amplitudes corresponding to these outcomes are all equal.

The ratio of the probabilities of a good outcome that starts with 1 and a good out-
come that starts with 0 is the golden ratio.

 In figure 5.21, there are Fn+1 = 2 good outcomes with the first digit 0 in their binary
form and Fn = 1 good outcome with the first digit 1 in their binary form. We can check
that the ratio of the probability of a good outcome that starts with 0 and that of a good
outcome that starts with 1 is the golden ratio:

from util import is_close

qc = fib_circuit(2)
state = qc.run()

assert is_close(abs(state[0])**2/abs(state[2])**2, (1+sqrt(5))/2) 
assert is_close(abs(state[1])**2/abs(state[2])**2, (1+sqrt(5))/2) 

Figure 5.22 shows the state created with n = 3 qubits. In this state table, there are
|G3| = F5 = 5 good outcomes.

Figure 5.20 A single-qubit state 
with good outcomes G1

Outcome Binary Amplitude Amplitude bar Probability

0 0 0.79 0.62

1 1 0.62 0.38

Figure 5.21 A two-qubit state 
with good outcomes G2

Outcome Binary Amplitude Amplitude bar Probability

0 00 0.62 0.38

1 01 0.62 0.38

2 10 0.49 0.24

3 11 −0.00 0.00

Checks that the ratio between the
probability of outcome 00 and
outcome 10 is the golden ratio

Checks that the ratio between the probability of
outcome 01 and outcome 10 is the golden ratio
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There are Fn+1 = 3 good outcomes with the first digit 0 in their binary form and Fn = 2
good outcomes with the first digit 1 in their binary form.

Summary
 To solve problems that search for specific outcomes or estimate the probability

of specific outcomes, we need mechanisms to identify outcomes of interest.
 The quantum circuits used to identify certain outcomes that we refer to as

“good” outcomes are called oracles.
 Phase oracles rotate the amplitudes of the good outcomes by 180 degrees.
 Bit oracles entangle outcomes with an additional qubit so that the good ones

are associated with its measurement of 1 and the bad ones with its measurement
of 0.

 We can convert from a bit oracle to a phase oracle and vice versa.

Exercise 5.4
There are only two distinct nonzero probabilities for all outcomes. Check that their
ratio is the golden ratio. 

Figure 5.22 A three-qubit 
state with good outcomes G3

Outcome Binary Amplitude Amplitude bar Probability

0 000 0.49 0.24

1 001 0.49 0.24

2 010 0.49 0.24

3 011 −0.00 0.00

4 100 0.38 0.15

5 101 0.38 0.15

6 110 0.00 0.00

7 111 -0.00 0.00



Quantum search
and probability estimation
In this chapter, we will see how quantum measurement can help us with our second
main pattern of quantum computations: searching for specific outcomes. Specifi-
cally, we will learn about Grover’s algorithm and related methods, such as amplitude
amplification. Grover’s algorithm can offer quadratic speed up (with respect to the
number of queries) over classical approaches for certain problems. Therefore, the
methods introduced in this chapter have broad applications, such as search, opti-
mization, and machine learning. To start, we will dive into one of the most com-
mon and consequential computational challenges: unstructured search. 

 Suppose we have an unstructured database with N items, and we want to find
one specific item in the list. To perform this search classically, we can use a query
function that checks whether an item meets the desired search criteria. We will
have to decide the order in which to perform the queries and check one item at a
time. Best-case scenario, we happen to find the right item on the first try! Worst-
case scenario, we have to check all N items, and the correct one is the last one we

This chapter covers
 Amplifying magnitudes of desired outcomes 

with Grover operators

 Searching for desired outcomes of quantum 
computations with measurement
133
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check. In a classical solution, we might need to perform anywhere from 1 to N checks
or queries. For a large enough N, we know that the best classical algorithms find the
right item with a high probability within N/2 checks.

 If we use a quantum solution to this problem, each time we perform the equivalent
quantum query or evaluation of the search criteria, we increase the probability of find-
ing the right item on measurement. To find one specific item in an unordered list of
N items, we will have a very high probability of finding the item after applying approx-
imately  queries. In figure 6.1, we compare the number of steps (queries) needed
to have a high probability of finding the one desired item in an unordered list of N
items using classical search methods versus Grover’s algorithm.

In chapter 5, we learned about quantum oracles. In this chapter, we will learn about
another procedure, called inversion or inversion by the mean. These two concepts are
used to implement Grover’s algorithm, as shown in figure 6.2. 

6.1 Amplitude amplification: Intuition and classical 
implementation
Assume we want to find one or more items in an unordered list of N items. We can
represent each of the items as an outcome of a state with at least  qubits. To
find the desired items, we need to increase the probability of measuring their corre-
sponding outcomes. To do this, we will use a method typically called amplitude amplifi-
cation, more accurately referred to as magnitude amplification. 

Figure 6.1 The number of steps (queries) needed to find one item in an unordered list 
of n items with a high probability
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To apply the amplitude amplification algorithm, we need to apply the following two
steps:

1 Prepare an initial state using a circuit (operator) A.
2 Construct an operator G, and apply it j times, for an integer j > 0 whose choice

will be discussed in this chapter.

The operator G is called a Grover iterate, or Grover operator. The construction of the opera-
tor consists of a quantum oracle and the inversion operator. 

 Figure 6.3 illustrates this method with a circuit diagram. As we have done in previ-
ous chapters, we will simulate these steps using classical implementations and then
introduce the corresponding quantum circuits.

6.1.1 Finding good outcomes with oracles

Assume we want to find one special item in a list of N = 8 items, but we do not know
where the item is. We can represent each of the items as an outcome of a quantum
state with n = 3 qubits. Any randomly selected outcome has the same probability of
being the good outcome. We represent this with equal amplitudes for each outcome:

from math import sqrt

n = 3
state = [1/sqrt(2**n) for _ in range(2**n)]

Quantum oracles
(bit or phase)

Quantum gates Quantum state

Inversion by the mean

Grover operator
(amplitude amplification) Figure 6.2 A dependency diagram of 

concepts introduced in this chapter

Figure 6.3 Circuit diagram of the magnitude (amplitude) 
amplification method where operator A prepares a state 
and operator G is the Grover iterate
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This state is illustrated in figure 6.4.

In chapter 5, we learned how a quantum oracle identifies, or “tags,” specific out-
comes. We call the tagged outcomes good outcomes and all the other outcomes bad
outcomes. We covered two types of oracles:

 Phase oracles, which rotate the amplitudes of the good outcomes by 180°
 Bit oracles, which entangle the good outcomes with another qubit that is mea-

sured 1

Let’s look at an example of the classical implementation of a phase oracle from chap-
ter 5. The predicate function identifies good outcome 3 as the only good outcome:

predicate = lambda k: True if k == 3 else False

We can use this predicate for the classical implementation of a phase oracle and apply
it to the state shown in figure 6.4:

def oracle(state, predicate):
    for item in range(len(state)):
        if predicate(item):
            state[item] *= -1

oracle(state, predicate)

The resulting state is shown in figure 6.5.
 In this chapter, we will learn how to manipulate the amplitudes of outcomes

tagged by oracles, increasing the probability of measuring those outcomes. In the con-
text of an unstructured search for a single item in a list, this method allows us to
increase the probability of measuring the outcome that represents the item we are
looking for as long as it is tagged by an oracle. 

Outcome Binary Amplitude Direction Magnitude Amplitude bar

0 000 0.35 0.0° 0.35

1 001 0.35 0.0° 0.35

2 010 0.35 0.0° 0.35

3 011 0.35 0.0° 0.35

4 100 0.35 0.0° 0.35

5 101 0.35 0.0° 0.35

6 110 0.35 0.0° 0.35

7 111 0.35 0.0° 0.35

Figure 6.4 A three-qubit state where all amplitudes have equal, real values
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NOTE In the examples in this chapter, the outcomes we are searching for—
the good outcomes—are classically known for the sake of understanding. In
many problems, the good outcomes are not known before we run a quan-
tum computation. The true power of Grover’s algorithm will become appar-
ent in the coming chapters when we look at problems with multiple registers
of qubits.

6.1.2 Computing similarity with inner products

Inner products are used in many problems where we need to measure the similarity
between vectors. In particular, the projection of one vector onto another can be calcu-
lated using an inner product, as shown in figure 6.6.

You may be familiar with the SUMPRODUCT operation in Excel or the weighted
sums used in combining inputs with weights in neural networks. These are examples
of inner products, sometimes called dot products in these contexts. 

 Let’s use a simple example to break down the main idea behind computing inner
products. Imagine that we have a shopping list of items. For example, say we bought
four apples, two oranges, two peaches, and three bananas. Let’s assume that one apple

Outcome Binary Amplitude Direction Magnitude Amplitude bar

0 000 0.35 0.0° 0.35

1 001 0.35 0.0° 0.35

2 010 0.35 0.0° 0.35

3 011 −0.35 180.0° 0.35

4 100 0.35 0.0° 0.35

5 101 0.35 0.0° 0.35

6 110 0.35 0.0° 0.35

7 111 0.35 0.0° 0.35

Figure 6.5 A three-qubit state after a phase oracle for good outcome 3 is 
applied to the state in figure 6.4

Figure 6.6 The projection of a 
two-dimensional vector onto 
another as an inner product
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costs $1.20, one orange costs $1.50, one peach costs $2.00, and one banana costs
$0.70. We can express these quantities and prices as lists:

quantities = [4, 2, 2, 3]
prices = [1.2, 1.5, 2, 0.7]

To calculate the total price for the list of items, we multiply the quantity of each item
by its price and add the results together:

print(sum([quantities[k] * prices[k] for k in range(len(quantities))]))

The printed sum is

13.9

In this example, we have a quantity list (vector) and a price list (vector). The printed
sum is the inner product of the two vectors. The inner product of two vectors v1 and v2

is typically denoted by v1, v2.
 The inner product of two complex vectors is defined as the sum of the products of

each element in the first vector and the conjugate of the corresponding element in
the second vector. The two vectors must have the same number of elements.

 The following Python code computes the inner product of two state vectors,
state1 and state2:

sum(state1[k]*state2[k].conjugate() for k in range(len(state1)))

The numpy package provides a function called vdot (vector dot product) for this func-
tionality. However, to avoid additional code dependencies, we can use the inner func-
tion defined as follows. 

def inner(v1, v2):
    assert(len(v1) == len(v2))
    return sum(z1*z2.conjugate() for z1, z2 in zip(v1, v2))

For two vectors v1 and v2, we will use the notation v1, v2 to denote their inner prod-
uct, just as for the dot product. This is the most common definition in mathematical
literature, but it is also possible to conjugate the first vector instead of the second,
which is equivalent to switching the order of the vectors in the inner product.

Listing 6.1 Computing the inner product of two state vectors

Exercise 6.1
What is the inner product of i, i and –i, i?
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The inner product of two quantum states of the same length is a complex number with
a magnitude of at most 1. The magnitude is 1 when the states are identical, meaning the
inner product of a quantum state with itself is 1. This is because when you multiply a
complex number with its conjugate, you get its squared magnitude. And when you
sum up the squared magnitudes of the amplitudes in a quantum state, you get 1.

6.1.3 The inversion operator

With the good outcome(s) tagged by a quantum oracle, we use a procedure that is
often called inversion by the mean to increase the magnitude of the good outcome(s).
We will simply call this operator inversion. 

NOTE The name inversion by the mean applies to the original context of the
Grover algorithm, where the initial state consists of amplitudes with equal
magnitudes (equal superposition). 

Geometrically, the inversion operator reflects, or mirrors, a state vector v into another
state vector u. We will typically denote this operator by Mu, or simply by M when the
state vector u is clear from the context.

 To understand what it does, let’s look at a classical equivalent implementation
using the function defined in listing 6.1. The function takes two parameters: a state
before (original) and after (current) the amplitudes corresponding to the good
outcomes have been multiplied by –1. It uses the inner function defined in listing 6.1
to compute their similarity. 

def inversion(original, current):
    proj = inner(original, current)
    for k in range(len(current)):
        current[k] = 2*proj*original[k] - current[k]

The inner product between the original state vector and the current state is a com-
plex number that reflects the similarity between the two states. Its magnitude is at
most 1. 

 Let’s understand the effect of the inversion transformation with a visual example.
We will look at complex numbers as points in a plane (endpoints of vectors starting at
the origin). Figure 6.7 illustrates example amplitudes of an outcome k in the states
original and current.

Listing 6.2 Classical implementation of the inversion operator

(0, 0)

Figure 6.7 Vector visualization of the 
amplitudes of an outcome k in the states 
original and current
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To find the new amplitude of outcome k, we do the following:

1 Multiply the original amplitude of outcome k by the inner product between the
entire original and current state vectors. The result is a single complex num-
ber (point in the plane).

2 Update the current amplitude of outcome k to be its inversion (reflection) with
respect to the complex number (or vector) in the previous step.

This step is illustrated in figure 6.8.

The power of the inversion operator comes when it is applied one or more times after
an oracle is applied. The effect increases or decreases the magnitudes of the good
states (as tagged by the oracle). Let’s look at an example using vector visualizations.

THE EFFECT OF THE INVERSION OPERATOR ON THE AMPLITUDES OF BAD OUTCOMES

The amplitudes of the bad outcomes are not changed when an oracle is applied. In
figure 6.9, we show the amplitudes of a bad outcome k before and after an oracle is
applied. 

The effect of the inversion transformation on the amplitudes of bad outcomes is to
decrease the magnitude of the current amplitude. Figure 6.10 illustrates this trans-
formation. 

(0, 0)

Figure 6.8 The value new [k] is the 
inversion of current [k] around the point 
⟨original,current⟩original[k].

(0, 0)

Figure 6.9 The amplitude of a bad outcome k before 
(original[k]) and after (current[k]) an oracle is applied

(0, 0)

Figure 6.10 The inversion of the amplitude 
corresponding to a bad outcome k
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THE EFFECT OF THE INVERSION OPERATOR ON THE AMPLITUDES OF GOOD OUTCOMES

The oracle multiplies the amplitudes of good outcomes by –1. This flips the amplitude in
the opposite direction, as shown in figure 6.11. The inversion transformation increases
the magnitude of the amplitude of the good outcome k, as shown in figure 6.12. 

Let’s look at a code example. We’ll use the three-qubit state in figure 6.5, obtained by
applying an oracle that tags the outcome 3 to a state where the amplitudes are in
equal superposition:

n = 3
state = [1/sqrt(2**n) for _ in range(2**n)]
s = state.copy()                              

oracle(state, predicate)

Now we can apply the inversion operator that reflects the current state into the origi-
nal state (the state before the oracle was applied):

inversion(s, state)  

We will denote this inversion operator as Ms, where s is the state before the oracle is
applied. The resulting state table is shown in figure 6.13.

 Let’s look at another example, with a random n = 3 qubit state and good outcome 5:

from util import generate_state

n = 3
state = generate_state(n)

s = state.copy()

predicate = lambda k: True if k == 5 else False
oracle(state, predicate)

(0, 0)

Figure 6.11 The amplitude of a good outcome k before (original[k]) and after (current[k]) an 
oracle is applied

(0, 0)

Figure 6.12 The inversion of the amplitude corresponding to a good outcome k

Copies the original 
state to use for the 
inversion

The parameter s is the initial state 
before the oracle was applied.
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Figure 6.14 illustrates the application of this oracle to a random state. We can see that
the amplitude for the good outcome 5 is multiplied by –1, and the rest of the ampli-
tudes remain unchanged.

Next, we perform the inversion:

inversion(s, state)

Figure 6.15 illustrates the state before and after this step. We can see that the magni-
tude of the amplitude of the good outcome increases, and the rest decrease.

Outcome Binary Amplitude Direction Magnitude Amplitude bar

0 000 0.18 0.0° 0.18

1 001 0.18 0.0° 0.18

2 010 0.18 0.0° 0.18

3 011 0.88 0.0° 0.88

4 100 0.18 0.0° 0.18

5 101 0.18 0.0° 0.18

6 110 0.18 0.0° 0.18

7 111 0.18 0.0° 0.18

Figure 6.13 The three-qubit state in figure 6.5 after applying the inversion operator Ms

Out Bin Ampl Dir Mag Ampl bar

0 000 −0.19 − 0.13i −144.1° 0.23

1 001 0.21 + 0.03i 7.0° 0.21

2 010 0.27 + 0.28i 45.6° 0.39

3 011 0.49 + 0.11i 12.5° 0.50

4 100 −0.20 + 0.02i 175.0° 0.20

5 101 0.32 + 0.09i 15.1° 0.33

6 110 −0.17 − 0.34i −116.4° 0.38

7 111 0.32 + 0.32i 45.0° 0.45

Out Bin Ampl Dir Mag Ampl bar

0 000 −0.19 − 0.13i −144.1° 0.23

1 001 0.21 + 0.03i 7.0° 0.21

2 010 0.27 + 0.28i 45.6° 0.39

3 011 0.49 + 0.11i 12.5° 0.50

4 100 −0.20 + 0.02i 175.0° 0.20

5 101 −0.32 − 0.09i −164.9° 0.33

6 110 −0.17 − 0.34i −116.4° 0.38

7 111 0.32 + 0.32i 45.0° 0.45

Figure 6.14 A random n = 3 qubit state before and after an oracle for good outcomes 5 is applied

Out Bin Ampl Dir Mag Ampl bar

0 000 −0.19 − 0.13i −144.1° 0.23

1 001 0.21 + 0.03i 7.0° 0.21

2 010 0.27 + 0.28i 45.6° 0.39

3 011 0.49 + 0.11i 12.5° 0.50

4 100 −0.20 + 0.02i 175.0° 0.20

5 101 −0.32 − 0.09i −164.9° 0.33

6 110 −0.17 − 0.34i −116.4° 0.38

7 111 0.32 + 0.32i 45.0° 0.45

Out Bin Ampl Dir Mag Ampl bar

0 000 −0.10 − 0.07i −144.1° 0.13

1 001 0.11 + 0.01i 7.0° 0.12

2 010 0.15 + 0.15i 45.6° 0.22

3 011 0.27 + 0.06i 12.5° 0.28

4 100 −0.11 + 0.01i 175.0° 0.11

5 101 0.82 + 0.22i 15.1° 0.85

6 110 −0.10 − 0.19i −116.4° 0.21

7 111 0.18 + 0.18i 45.0° 0.25

Figure 6.15 Applying the inversion operator to a random n = 3 qubit state with good outcome 5
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Visualizing inversion by the mean
In general, the quantity

is different for each outcome k. However, in the specific case that the original state
vector is the equal superposition obtained by applying a Hadamard gate to each qubit
in the state, this quantity is the average, or mean, of the amplitudes in the current
state. Hence the name inversion by the mean. 

For example, let’s create an n = 3 qubit state in equal superposition and apply an
oracle for good outcome 3:

n = 3
state = [1/sqrt(2**n) for _ in range(2**n)]

s = state.copy()

predicate = lambda k: True if k == 3 else False
oracle(state, predicate)

We can check that the mean of the amplitudes is equal to the quantity defined pre-
viously for bad outcomes k:

from util import is_close

amplitude_mean = sum(state)/2**n

proj = inner(s, state)
for k in range(len(state)):
    if k != 3:
        assert is_close(proj*state[k], amplitude_mean)

We visualize the amplitudes of the state after the oracle is applied with a vertical bar
graph that shows negative amplitudes. The dashed line is the mean of the amplitudes.

Now we can simulate the inversion by the mean with the following Python code:

for k in range(len(state)):
    state[k] = 2*amplitude_mean-state[k]

The resulting state is the same as the state in figure 6.13. 

The amplitudes of a three-qubit state prepared 
with amplitudes in equal superposition after 
applying an oracle for good outcome 3
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6.1.4 Putting it together: The Grover iterate

The combination of an oracle O and the inversion operator M corresponding to an
initial state is called a Grover operator or Grover iterate. The term iterate comes from the
fact that it is applied multiple times, iteratively. 

 If the initial state (which contains the magnitudes we want to amplify) is prepared
by a circuit A, then the magnitude amplification procedure consists of A followed by a
number of applications of G. This can be expressed as G jA for an integer j > 0. More
precisely, the diagram in figure 6.16 reflects the fact that the Grover iterate consists of
the application of a given oracle O, followed by the inversion operator M correspond-
ing to the state prepared by operator A.

Let’s look closer at what happens each time we apply the operator G. Assume the ini-
tial combined measurement probability of good outcomes is

for some angle θ. Note that any real number between 0 and 1 can be expressed in
this form.

 After j ≥ 0 applications of the Grover iterate (oracle followed by inversion), the
combined measurement probability of the good outcomes becomes

The inner product of the state after operator A is applied and the state after j applica-
tions of the Grover iterate is

In summary, the state tables in figure 6.17 show the combined probabilities of the
good outcomes and bad outcomes before and after j applications of the Grover iter-
ate. Using this knowledge, we can add assertions to the classical implementation of
the Grover iterate to check the amplitudes of the state, as in the following listing.

Figure 6.16 Circuit diagram of the magnitude 
amplification procedure GjA, where g consists of 
an oracle O and the inversion operator M
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from math import cos

def classical_grover(state, predicate, iterations):
    s = state.copy()
    items = [k for k in range(len(state)) if predicate(k)]

    p = sum([abs(s[k])**2 for k in items])  
    theta = asin(sqrt(p))                   
    assert is_close(inner(s, state), 1)

    for it in range(1, iterations + 1):
        oracle(state, predicate)
        inversion(s, state)
        assert is_close(inner(s, state), cos(2 * it * theta))  

        p = sum([abs(state[k])**2 for k in items])         
        assert is_close(p, sin((2 * it + 1)*theta)**2)  

In the case that the operator A prepares a state with a uniform distribution, the mag-
nitudes of good outcomes are given by the following function, where the parameter n
is the number of qubits, L is the number of good outcomes, and j is the number of
iterations:

from math import sin, asin

def target_amplitude_uniform(n, l, j):
    theta = asin(sqrt(l/2**n))
    return sin((2*j+1)*theta)/sqrt(l)

Let’s apply one iteration of the Grover operator to our example state, where n = 3 and
outcome 3 is the good outcome:

n = 3
items = [3]
predicate = lambda i: True if i in items else False

state = [1/sqrt(2**n) for _ in range(2**n)]

Listing 6.3 Classical implementation of the Grover iterate

Outcomes Combined probability Outcomes Combined probability

bad

good

bad

good

Figure 6.17 The combined measurement probabilities of good and bad outcomes 
before and after j applications of the Grover iterate

Uses the probability of 
measuring a good outcome 
to define an angle theta

The inner product of the state after operator
A is applied and the state after j applications

of the Grover iterate is cos(2jθ ).

Finds the new 
probability of 
measuring a 
good outcomeChecks that the probability of

good outcomes is sin2((2j+1)θ)
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classical_grover(state, predicate, iterations = 1)

assert is_close(state[items[0]], target_amplitude_uniform(3, 1, 1))

This is the same process we performed in the previous section, and the resulting state
table is shown in figure 6.18.

Let’s apply another iteration:

n = 3
items = [3]
predicate = lambda i: True if i in items else False

state = [1/sqrt(2**n) for _ in range(2**n)]

classical_grover(state, predicate, iterations = 2)

assert is_close(state[items[0]], target_amplitude_uniform(3, 1, 2))

In the resulting state, shown in figure 6.19, the magnitude of the amplitude of the
good outcome is increased even more.

 Let’s try three iterations:

n = 3
items = [3]
predicate = lambda i: True if i in items else False

state = [1/sqrt(2**n) for _ in range(2**n)]

classical_grover(state, predicate, iterations = 3)

assert is_close(state[items[0]], target_amplitude_uniform(3, 1, 3))

Outcome Binary Amplitude Direction Magnitude Amplitude bar Probability

0 000 0.18 0.0° 0.18 0.03

1 001 0.18 0.0° 0.18 0.03

2 010 0.18 0.0° 0.18 0.03

3 011 0.88 0.0° 0.88 0.78

4 100 0.18 0.0° 0.18 0.03

5 101 0.18 0.0° 0.18 0.03

6 110 0.18 0.0° 0.18 0.03

7 111 0.18 0.0° 0.18 0.03

Figure 6.18 A three-qubit state with good outcome 3 after applying operator A and 
one Grover iteration
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If we measure the resulting state, shown in figure 6.20, the probability of getting the
good outcome, although still higher than the probabilities of the bad outcomes, is
smaller than the probability of the good outcome in the state prepared with two itera-
tions. That is, applying three iterations is not as good as applying two iterations.

How many iterations?
Given a state with n qubits prepared in equal superposition, the amplitude(s) corre-
sponding to L good outcome(s) after j iterations is

Outcome Binary Amplitude Direction Magnitude Amplitude bar Probability

0 000 −0.09 180.0° 0.09 0.01

1 001 −0.09 180.0° 0.09 0.01

2 010 −0.09 180.0° 0.09 0.01

3 011 0.97 0.0° 0.97 0.95

4 100 −0.09 180.0° 0.09 0.01

5 101 −0.09 180.0° 0.09 0.01

6 110 −0.09 180.0° 0.09 0.01

7 111 −0.09 180.0° 0.09 0.01

Figure 6.19 A three-qubit state with good outcome 3 after applying operator A and two 
Grover iterations

Outcome Binary Amplitude Direction Magnitude Amplitude bar Probability

0 000 −0.31 180.0° 0.31 0.10

1 001 −0.31 180.0° 0.31 0.10

2 010 −0.31 180.0° 0.31 0.10

3 011 0.57 0.0° 0.57 0.33

4 100 −0.31 180.0° 0.31 0.10

5 101 −0.31 180.0° 0.31 0.10

6 110 −0.31 180.0° 0.31 0.10

7 111 −0.31 180.0° 0.31 0.10

Figure 6.20 A three-qubit state with good outcome 3 after applying operator A and 
three Grover iterations
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(continued)

where the angle  satisfies the property .

The following graph shows the amplitude corresponding to a single good outcome in
a state with n = 3 qubits as the number of iterations j increases: the largest ampli-
tude is after two iterations.

The next graph shows the amplitudes corresponding to the case when we have two
good outcomes in a state with n = 3 qubits as the number of iterations j increases:
the largest amplitude is after one iteration.

The amplitude of a single 
good outcome (in a state with 
n = 3 qubits) as a function of the 
number of Grover iterations 
performed

The amplitudes of the two 
good outcomes (in a state with 
n = 3 qubits) as a function of 
the number of Grover iterations 
performed



1496.1 Amplitude amplification: Intuition and classical implementation
Using the number of good outcomes, L = len(items), and the total number of out-
comes, 2**n, we can find the optimal number of iterations with

from math import floor, pi

num_iterations = int(floor(pi/4*sqrt(2**n/len(items))))

NOTE In the function classical_grover we iterate through a range from 1
to the number of iterations plus 1 (range(1, num_iterations + 1)). 

Let’s look at another example, this time using a random two-qubit state and good out-
come 1:

n = 2
items = [1]
predicate = lambda i: True if i in items else False

num_iterations = 3

state = generate_state(n)
for it in range(1, num_iterations + 1):
    s = state.copy()
    classical_grover(s, predicate, iterations = it)

This example is illustrated using unit color wheels in figure 6.21. The first wheel shows
the random two-qubit state, and each subsequent wheel shows an increasing number
of Grover iterations, from one to three.

Due to the periodicity of the sine function, the magnitude of the good outcomes(s)
repeats as more iterations are applied. Given a state with n qubits, N = 2n ampli-
tudes, and the number of good outcomes L, the optimal number of Grover iterations
to perform is

0

1
2

3
0

1

2

3

0

1
2

3 0
1

2

3

Figure 6.21 A random two-qubit state with good outcome 1; and the state after one, two, and three 
Grover iterations
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6.1.5 A classical but quantum-friendly implementation of the 
inversion operator

The quantum circuit implementation of the inversion operator is not as intuitive as
the classical implementation. In this section, we will look at a different implementa-
tion of the operator that is easy to translate into a quantum version.

 When the starting state is prepared with a circuit (operator) A, we can express its
corresponding inversion operator M as AM0A–1, where M0 is the inversion in the initial
state. The circuit diagram of the magnitude amplification circuit using this operator
for the inversion is shown in figure 6.22.

The structure of this circuit ensures that the amplitude of the 0 outcome is always real
before M0 is applied. The operator M0 simply multiplies all amplitudes by –1 except
the amplitude of 0.

 In the previous implementation, we inverted the amplitude corresponding to an
outcome k around the complex number

where original is the state prepared by the given operator A. In this implementation,
we will invert around the point

where original is a default n-qubit state. Remember that in the default state, only the
amplitude corresponding to outcome 0 is 1, and the rest are 0, so

Exercise 6.2
Using the code introduced in this section, create a random state with n = 4 qubits, and
apply the classical magnitude amplification procedure for good outcomes 3 and 10. 

Figure 6.22 Circuit diagram for the 
magnitude amplification procedure GjA, 
where the operator g consists of an oracle 
O and the inversion operator M = AM0A

–1
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For the amplitude corresponding to the outcome 0 (state [0]) we will invert around
itself, leaving it unchanged; for all other outcomes, we will invert around 0. Inverting
around 0 is the same as multiplying the amplitude by –1.

 In this section, we will use a randomly generated operator A. To create such an
operator for n qubits, we will use the function random_transformation defined in the
chapter code. For simplicity, this function returns a random transformation and its
inverse. Let’s create a random transformation (and its inverse) for n = 3 qubits:

from util import random_transformation

n = 3
f = random_transformation(n)
A = f[0]                      
A_inverse = f[1]              

Let’s look at the state prepared by this random operator. We do this by initializing a
state and then applying the random transformation:

from sim_core import init_state

state = init_state(n)
A(state)

The state created is shown in figure 6.23. Now we can use the following, which per-
forms the operation AM0A–1.

from math import log2

def inversion_0_transformation(f, state):
    n = int(log2(len(state)))

Listing 6.4 Function to perform the inversion operation

The first returned value is the random 
transformation, and the second is the inverse.

Outcome Binary Amplitude Direction Magnitude Amplitude bar Probability

0 000 0.09 + 0.40i 77.8° 0.41 0.17

1 001 0.17 + 0.23i 53.2° 0.29 0.08

2 010 −0.43 − 0.05i −174.0° 0.43 0.19

3 011 −0.20 − 0.03i −170.6° 0.20 0.04

4 100 0.44 + 0.17i 20.5° 0.47 0.22

5 101 0.17 − 0.22i −51.8° 0.27 0.08

6 110 0.10 − 0.39i −76.2° 0.40 0.16

7 111 −0.11 − 0.22i −116.9° 0.24 0.06

Figure 6.23 A three-qubit state after applying a random operator A
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    transform = f[0]
    inverse_transform = f[1]

    inverse_transform(state)           
    assert is_close(state[0].imag, 0)
    for k in range(1, len(state)):     
        state[k] = -state[k]           
    transform(state)          

Let’s use the same operator A we used to create the state in figure 6.23, and apply an
oracle for the good outcome 3:

predicate = lambda k: True if k == 3 else False
oracle(state, predicate)

Now we can apply the inversion operation to the state:

inversion_0_transformation(f, state)

Figure 6.24 shows the state tables after each operation is applied to the state. When M0

is applied, all the amplitudes are multiplied by –1 except the amplitude correspond-
ing to outcome 0. In the last state table, the magnitude of the amplitude of the good
outcome is amplified, and all the other magnitudes have decreased. Next, we will see
that the new implementation of the inversion operator in this section can be trans-
lated into a quantum circuit implementation. 

6.2 Magnitude amplification: Quantum circuit 
implementation
The quantum implementation of the magnitude amplification procedure mirrors the
classical one we introduced in the previous section. In this section, we will use our
Python simulator to build the quantum circuit illustrated in figure 6.25. 

 The efficiency of a Grover operator implementation depends on the efficiency of
the oracle implementation, which is required as a starting point. Changing ampli-
tudes by itself does not provide an advantage. As we will see, we need quantum mea-
surement to get an advantage in solving search problems with a quantum approach.

Applies the inverse 
of operator A

Applies the operator M0

Applies the operator A

Out Ampl Ampl bar

0 −0.11 − 0.02i
1 −0.41 − 0.10i
2 0.16 + 0.49i
3 −0.09 − 0.28i
4 0.22 + 0.19i
5 −0.00 + 0.13i
6 0.09 − 0.34i
7 −0.33 + 0.35i

Out Ampl Ampl bar

0 0.82
1 −0.04 + 0.16i
2 0.21 − 0.06i
3 0.15 − 0.23i
4 0.20 − 0.06i
5 0.11 − 0.05i
6 −0.13 + 0.03i
7 0.30 + 0.05i

Out Ampl Ampl bar

0 0.82
1 0.04 - 0.16i
2 −0.21 + 0.06i
3 −0.15 + 0.23i
4 −0.20 + 0.06i
5 −0.11 + 0.05i
6 0.13 − 0.03i
7 −0.30 − 0.05i

Out Ampl Ampl bar

0 −0.07 − 0.01i
1 −0.26 − 0.07i
2 0.11 + 0.31i
3 0.24 + 0.75i
4 0.14 + 0.13i
5 −0.00 + 0.08i
6 0.06 − 0.22i
7 −0.21 + 0.22i

A AM

Figure 6.24 Application of the operator M = AM0A
–1 to a three-qubit state prepared with a random operator A, 

followed by the application of an oracle O for the good outcome 3
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6.2.1 Quantum oracle

The quantum oracle circuit O tags the good outcomes. Using a list of good outcomes
items, we can use the phase_oracle_match function from chapter 5 to create a circuit
that multiplies the amplitudes corresponding to the good outcomes by –1. 

from sim_circuit import *

def is_bit_not_set(m, k):
    return not (m & (1 << k))

def phase_oracle_match(n, items):
    q = QuantumRegister(n)
    qc = QuantumCircuit(q)

    for m in items:
        for i in range(n):
            if is_bit_not_set(m, i):
                qc.x(q[i])

        qc.mcp(pi, [q[i] for i in range(len(q) - 1)], q[len(q) - 1])

        for i in range(n):
            if is_bit_not_set(m, i):
                qc.x(q[i])
    return qc

6.2.2 The inversion operator

Next, we will create a quantum circuit that performs the inversion transformation
denoted by M. Remember, given a state-preparation operator A, we can express its
corresponding inversion operator M as M = AM0A–1. The classical implementation of
the operator M0 reflects the formal mathematical theory of Grover operators. In the
quantum implementation, we use the operator –M0 instead of M0 because it is much
more efficient to implement with quantum gates. This operator effectively multiplies
the amplitude corresponding outcome 0 by –1, leaving all the other amplitudes
unchanged. Using –M0 instead of M0 does not affect the outcome probabilities after
applying any number of Grover iterations. Going forward, we will use the notation M0

Listing 6.5 Function to create a phase oracle circuit

Figure 6.25 Circuit diagram of 
magnitude (amplitude) amplification
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for the negative of the M0 operator we used in the previous sections. This way, all the
formulas will stay the same. 

 The following function creates the circuit M0 for n qubits.

def inversion_0_circuit(n):
    q = QuantumRegister(n)
    qc = QuantumCircuit(q)

    for i in range(n):
        qc.x(q[i])

    qc.mcp(pi, [q[i] for i in range(n - 1)], q[n - 1])

    for i in range(n):
        qc.x(q[i])

    return qc

The circuit diagram in figure 6.26 shows the operator M0 for three qubits. For exam-
ple, when applied to a random state, as shown in figure 6.27, the amplitude of out-
come 0 is multiplied by –1.

When the operator A consists of a Hadamard gate applied to each qubit, we can cre-
ate the circuit M with the function defined in listing 6.7. The parameter A is the circuit
A for n qubits. 

NOTE The inverse method of a circuit returns its inverse. The implementa-
tion applies the inverses of each gate in the circuit’s transformation list in
reverse order. 

Listing 6.6 Function to create a circuit for n qubits that multiplies outcome 0 by –1

Figure 6.26 Circuit M0 for 
three qubits

Figure 6.27 Applying operator M0 to a random three-qubit state
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def inversion_circuit(A):
    n = sum(A.regs)
    q = QuantumRegister(n)
    qc = QuantumCircuit(q)

    qc.append(A.inverse(), q)

    qc.append(inversion_0_circuit(n), q)

    qc.append(A, q)

    return qc

6.2.3 Grover iterate

Using the general form of the Grover iterate G = AM0A–1O, we can define the function
grover_iterate_circuit, which creates the Grover iterate circuit. The function takes
two parameters: the oracle (O) for n qubits and the operator (A) that is used to pre-
pare the initial state. 

def grover_iterate_circuit(A, O):
    n = sum(O.regs)
    q = QuantumRegister(n)
    qc = QuantumCircuit(q)

    qc.append(O, q)

    qc.append(inversion_circuit(A), q)

    return qc

6.2.4 Putting it all together: Grover’s algorithm

We can use the functions introduced in this section to build the quantum circuit for
magnitude amplification (or Grover’s algorithm). The function in listing 6.9 creates
the circuit in figure 6.28, where the parameters A and O are the n-qubit circuits A and
O, respectively. The iterations parameter determines how many times the Grover
iterate is applied, which is constructed using grover_iterate_circuit (defined in
listing 6.8). 

def grover_circuit(A, O, iterations):
    n = sum(A.regs)
    q = QuantumRegister(n)
    qc = QuantumCircuit(q)

Listing 6.7 Function to create the inversion circuit

Listing 6.8 Function to create the Grover iterate circuit

Listing 6.9 Function to create the magnitude amplification circuit
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    qc.append(A, q)

    for i in range(1, iterations + 1):
        qc.append(grover_iterate_circuit(A, O), q)
        qc.report(f'iteration_{i}')

    return qc

NOTE We can use the report() method of the circuit to create a snapshot
report containing the transformations applied since the last report, and the
states before and after applying those transformations. We can use such
reports to visualize the encoding process, as you will see in the chapter code. 

Suppose we have a list of N = 8 items, represented as the outcomes of a quantum com-
putation with n = 3 qubits, and an oracle tagging three good outcomes. We can use
the uniform function from chapter 4 to create a circuit A that prepares a state with
equal magnitudes:

def uniform(n):
    q = QuantumRegister(n)
    qc = QuantumCircuit(q)

    for i in range(len(q)):
        qc.h(q[i])

    return qc

With uniform as our operator A, n = 3 qubits, and good outcomes 1, 3, and 7, we can
define the following circuit:

n = 3
items = [1, 3, 7]
num_iterations = int(floor(pi/4*sqrt(2**n/len(items))))

qc = grover_circuit(uniform(n), phase_oracle_match(n, items), num_iterations)

This circuit is illustrated in figure 6.29. Note that the optimal number of iterations in
this example is one, so the Grover iterate does not repeat.

Figure 6.28 Circuit diagram of the 
magnitude amplification procedure 
GjA, where the operator g consists 
of an oracle O and the inversion 
operator M = AM0A

–1
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We can check the amplitudes at each step using the reports generated with the follow-
ing code:

for i in range(1, num_iterations + 1):
    for m in items:
        assert is_close(
            qc.reports[f'iteration_{i}'][2][m],
            (-1)**i * target_amplitude_uniform(n, len(items), i)
        )

Summary
 Grover’s algorithm can offer a quadratic speedup over classical algorithms for

unstructured database searches, requiring only approximately  queries
compared to N/2 queries classically to have a high probability of finding a
specific item.

 The inner product of two state vectors measures their similarity.
 The magnitude (amplitude) amplification method is used to increase the prob-

ability of measuring one or more good outcomes. This procedure can be
expressed as G jA for an integer j > 0, where A is an operator that prepares a
starting state and G is the Grover iterate.

Exercise 6.3
Create a magnitude amplification circuit for n = 3 qubits and single good outcome 5
using the circuit returned by the function prepare_binomial from chapter 4 as the
initial state-preparation operator (with theta = 4*pi/7):

def prepare_binomial(n, theta):
    q = QuantumRegister(n)
    qc = QuantumCircuit(q)

    for i in range(len(q)):
        qc.ry(theta, q[i])

    return qc

Figure 6.29 The quantum circuit for three qubits and good outcomes 1, 3, and 7
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– The Grover operator G consists of a quantum oracle that tags desired outcomes
by multiplying their amplitudes by –1, followed by an inversion operator.

– The inversion operator increases the magnitude of amplitudes for tagged
(good) outcomes while decreasing the magnitude of untagged (bad) outcomes.

 The quantum-circuit implementation of Grover’s algorithm uses the general
form of the Grover iterate G = AM0A–1O, where A is the state preparation opera-
tor, 0 is the oracle, and M0 is the inversion operator.



The quantum
Fourier transform
The quantum Fourier transform (QFT) is an essential operation in quantum com-
puting. The QFT is a crucial building block in numerous quantum algorithms,
including some you may have already heard of, like Shor’s algorithm and quan-
tum phase estimation. As a quantum computing developer, you need to under-
stand the details of the QFT and the role it plays in other quantum algorithms. In
this chapter, we will look closely at the structure and functionality of the QFT (see
figure 7.1). Primarily, we will see how the QFT allows us to translate information
encoded in amplitude directions (phases) into amplitude magnitudes. We will
also see how the QFT can be performed efficiently on a quantum computer by
taking advantage of quantum parallelism and interference. The efficiency of the
QFT makes it a key tool in developing quantum solutions that perform better
than their classical counterparts.

This chapter covers
 Periodic signals and periodic quantum states

 Converting directions into magnitudes

 Introducing the quantum Fourier transform and 
its inverse
159



160 CHAPTER 7 The quantum Fourier transform
To illustrate its significance, we will begin by looking at its classical counterpart: the
discrete Fourier transform (DFT). You may be familiar with Fourier transforms if you
studied computer graphics, digital signal processing, or sound engineering. Even if
the term is new to you, chances are you’ve encountered technologies that rely on Fou-
rier transforms, such as digital recordings of songs. 

 The first machine that could record sound and play it back was the phonograph,
invented by Thomas Edison in 1877. A phonograph uses records with grooves of vary-
ing depth and width, which reflect the audio waveform. To play a song, a stylus is
dragged over the record, creating electrical signals that can be amplified into audible
sound waves. The phonograph uses analog encoding, where the information is repre-
sented with continuous signals (the electrical signals produced by the grooves). 

 To save songs or other audio as digital files, we convert the sound waves into num-
bers and store them in a special way. To listen to these saved songs, we need to convert
the numbers back into sound waves. The DFT is a tool that helps us find the different
frequencies in a sound wave and represent them as numbers. We can also use the
inverse version of this tool to re-create a sound wave from these numbers. This mecha-
nism is used by some audio encoding algorithms. Let’s examine frequencies and
sound waves in more detail.

7.1 Periodic patterns in sound waves and quantum states
Every day, we come across various repeating patterns in the world around us, some of
which occur naturally and others designed by humans. Patterns that repeat at regular
intervals, such as seasons or ocean tides, are periodic. The sound wave created by a musical
note, for example, exhibits a repeating pattern as it travels through the air. This wave is a
specific type of periodic signal. When we encounter these periodic patterns, we often con-
sider whether they are repeating over time (like a clock ticking regularly) or over space
(like a series of evenly spaced objects). 

NOTE A signal can be any pattern or data that changes over time or space,
including sound, images, numerical data, and more. In a mathematical sense,
a signal is a function that represents how a quantity changes with respect to
an independent variable, such as time. 

Periodic signals
(waves, sinusoids)

Inner products
(similarity)

Quantum Fourier transform

Fourier bases

Figure 7.1 A dependency diagram of concepts introduced in this chapter
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7.1.1 Periodic patterns in sound waves

Most of the sounds we hear in our daily lives are a mix of different individual sound
waves. These mixed sound waves are called composite sound waves. 

Composite sound waves can be broken down into simpler sinusoidal waves, or sinusoids.
A sinusoid can be defined using a sine or cosine function. The sine function defined
on the interval [–2π, 2π] is illustrated in figure 7.2. 

 Sinusoidal waves have a frequency, amplitude, and phase. The frequency of a sinu-
soidal wave tells us how many cycles are completed within a given interval of time
(for example, 2π). The wave in figure 7.2, sin(x) for –2π ≤ x ≤ 2π, completes one
cycle every 2π interval, and therefore it has a frequency of 1. One cycle of the wave is
highlighted in figure 7.3. The amplitude of a sinusoidal wave is the peak height of
the wave. We can see that the sine wave in figure 7.3 has an amplitude of 1. The sinu-
soidal wave can be shifted horizontally. This shift is called the phase of the wave. The
phase of our simple sine wave is 0, as shown in figure 7.3. 

Singing glasses
We can make a sound with a glass by tapping it or running a wet finger around its
rim. The size and shape of a glass determine its resonant frequency, which is the fre-
quency of the sound wave it produces. The frequency of a sound wave is the number
of repetitions (or cycles) completed in one unit of time. Generally, larger glasses have
lower resonant frequencies, and smaller glasses have higher ones. If we run a wet
finger around the edge of a glass, record it, and play the same sound back at a high
volume, the glass will start vibrating or even break (if the volume is high enough). 

You may have heard about using glasses of different shapes and sizes as a musical
instrument, which is called a glass harmonica. People can make music with a glass
harmonica by vibrating the glasses with the desired frequencies. If they use three
glasses to play a note in a song, the sound we hear is a mix of all the notes from
those glasses. In other words, the sound wave we hear is a composition of the fre-
quencies of each glass.

i

ii

iii

iv

A glass harmonica and the composition of waves
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A sinusoid can also be defined in terms of the cos function. Cosine and sine waves
have the same shape, but they are shifted by π/2 radians, as illustrated in 7.4. 

 In its most general form, a sinusoid can be expressed as A cos (2π f t + ϕ), where

 t is time.
 A is the amplitude (height of the wave).
 ϕ is the phase (in radians when t = 0).
 f is the frequency.

Figure 7.2 A simple 
sinusoidal wave, sin (x) 
for –2π ≤ x ≤ 2π

Sine wave

Phase (0)

Amplitude (1)

Figure 7.3 The sinusoidal 
wave sin(x) for real values x 
has amplitude 1, phase 0, 
and frequency 1.
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NOTE As is often the case in science and technology, the meaning of a term may
vary depending on the context or area it’s used in. The amplitude of a wave as
defined here is different from the amplitude corresponding to an outcome in a
quantum state.

In the glass harmonica example, each glass generates a sound with a standard fre-
quency. When multiple glasses are used at the same time, a more complex sound
results. Complex sound waves can be decomposed into sinusoids with standard fre-
quencies. These frequencies can then be stored digitally and recombined later to
replay the original sound. This is where Fourier transforms come into play. Let’s con-
sider a simple example of this process.

 We start with a (continuous) sinusoidal wave defined by  as a

function of time 0 ≤ t < N for a given positive integer n. To turn the continuous wave into
a discrete signal, we will take n samples at the equally spaced points in time {0, 1, …,
N – 1}. For example, for N = 8, we can define discrete samples of the signal using the fol-
lowing Python code:

from math import sqrt, pi, cos

N = 8
frequency = 1.7
samples = [1/sqrt(8)*cos(2 * pi * frequency * (t / N)) for t in range(N)]

Now we can visualize the wave and the eight values we computed previously:

import numpy as np
import matplotlib.pyplot as plt

Sine and cosine waves

Figure 7.4 The sine 
and cosine waves 
plotted together
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x = np.linspace(0, N, 50)
wave = [1/sqrt(8)*cos(2 * pi * frequency * (t/N)) for t in x]
plt.plot(x, wave, label='signal', color='red')
plt.scatter(range(N), samples)
plt.show()

The resulting graph is shown in figure 7.5. As expected, we see 1.7 cycles of the wave
in the eight time intervals. 

NOTE Sound waves are typically modeled as real-valued signals, meaning they
have values that are real numbers.

7.1.2 Periodic patterns in quantum states

Now let’s look at how we can represent periodic patterns in quantum states. We can-
not directly translate the classical implementation that uses a single sinusoid. It would
conflict with the rule that the squared magnitudes of the complex numbers that form
a quantum state must add up to 1. However, we can use two sinusoids, either sepa-
rately or combined into a complex sinusoid. 

 Figure 7.6 illustrates a complex sinusoid with the cosine and sine parts as projec-
tions on the real and imaginary planes, respectively.

 Consider the complex sinusoid

where n is the interval of time we are working with, 0 ≤ k < N, and the angle θ depends
on the frequency of the signal.

NOTE Recall that the relationship between a given angle θ and a given fre-
quency v is θ/(2π) = v/N.

Figure 7.5 Visualization of the signal 
with the eight discrete values
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We can create a quantum state with amplitudes that are discrete samples of this com-
plex signal with a given theta (for example, π/3) using the following code:

from util import cis
from math import sin

theta = pi/3
state = [sqrt(1/N) * cis(k*theta) for k in range(N)]

We call this a geometric sequence or complex sinusoid state. Figure 7.7 shows the state
table for this state. 

Let’s define a reusable function geom that creates a geometric sequence defined by an
angle theta and is a valid n-qubit quantum state. 

 
 

The cis shortcut function
Remember, we can use the shortcut function cis defined as 

def cis(theta):
    return cos(theta) + 1j*sin(theta)
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Figure 7.6 Projections of the 
sine and cosine parts of a 
complex sinusoid

Outcome Amplitude

Figure 7.7 The geometric sequence state for an angle θ. The 
direction of the amplitude corresponding to outcome k is kθ.
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def geom(n, theta):
    N = 2**n
    return [sqrt(1/N) * cis(k*theta) for k in range(N)]

Let’s use it to create a three-qubit quantum state that is a geometric sequence with
θ = π/3:

state = geom(3, pi/3)

As we can see in the definition of the function geom, each amplitude will have a

magnitude of ; in this example, . The amplitude at an index 0 ≤ k < 8 will

have a direction of k π/3. We can print the direction (phase) of each of the ampli-
tudes in the example state defined previously:

from math import atan2

for k in range(len(state)):
    print("phase of amplitude ", k, ":", round(atan2(state[k].imag, 

state[k].real), 5))

Due to the periodicity of cosine and sine, the phases start repeating at outcome 6:

phase of amplitude  0 : 0.0
phase of amplitude  1 : 1.0472
phase of amplitude  2 : 2.0944
phase of amplitude  3 : 3.14159
phase of amplitude  4 : -2.0944
phase of amplitude  5 : -1.0472
phase of amplitude  6 : -0.0
phase of amplitude  7 : 1.0472

Using the unit color wheel, we can visualize the frequency of the sequence as the
number of rotations around the wheel as we step through the sequence. As we know, a
full rotation around the unit circle covers 2π radians (or 360°). In this example, there
are eight steps, each spanning one-sixth of a full rotation. In total, we will have 1 + 1/3
rotations around the circle (see figure 7.8). Therefore, the frequency is 4/3.

Listing 7.1 Function for creating a geometric sequence state

0

12

3

4 5

6

7

Figure 7.8 Unit color wheel 
representation of the geometric 
sequence state for θ = π/3
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Let’s create a three-qubit quantum state, which is a geometric sequence with θ = π/6:

state = geom(3, pi/6)

Each amplitude in this state will have the same magnitude of  and a phase of k π/6,

where 0 ≤ k < 8, as shown in figure 7.9.

We know that each of the eight angle steps is θ = π/6, adding up to 4/3 π, which rep-
resents 2/3 of 2π (a full cycle). Therefore, the frequency is 2/3.

 We can prepare an n-qubit geometric sequence state for a given value v using the
geometric_sequence_circuit function. Remember the relationship between v and
θ : θ = v 2π/N. 

from sim_circuit import *

def geometric_sequence_circuit(n, v):
    theta = v*2*pi/N

    q = QuantumRegister(n)
    qc = QuantumCircuit(q)

    for j in range(n):
        qc.h(q[j])

    for j in range(n):
        qc.p(2 ** j * theta, q[j])

    return qc

If we use this function to encode the geometric sequence for the frequency v = 1.7,
we get the state shown in figure 7.10:

n = 3
v = 1.7
qc = geometric_sequence_circuit(n, v)
state = qc.run()

Listing 7.2 Creating the circuit for encoding a geometric sequence state

0

1
234

5

6

7

Figure 7.9 Unit color wheel for the 
geometric sequence state for θ = π/6
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In this state, all the amplitudes match those of the example signal, , and the direc-

tions reflect the expected frequency of 1.7. We can check this using the following code:

from util import all_close

theta = v*2*pi/2**n
assert all_close(state, [sqrt(1/2**n) * cis(k*theta) for k in range(2**n)])

This type of encoding is simpler than using real sinusoids, and we will study it in more
detail. Now we will look at a special type of periodic pattern that is essential to Fourier
transforms. 

7.1.3 Roots of unity and their geometric sequences

A root of unity is a complex number ω that is 1 when raised to a specific positive integer
power n, (ωN = 1). Then the following powers of ω are also roots of unity: ω0, ω1, ω2, …,
ωN–1. Graphically, they represent equally spaced points on the unit circle, the vertices
of a regular n-sided polygon (see figure 7.11). 

 For a given integer n, we typically denote the root of unity with the smallest non-
zero phase (direction) as

For example, let’s check that ω N
N  = 1 for N = 8:

N = 8
omega = cis(2*pi/N)
print(abs(omega**N))

Outcome Binary Amplitude Direction Magnitude Amplitude bar Probability

0 000 0.354 0.0° 0.354 0.125

1 001 0.083 + 0.344i 76.5° 0.354 0.125

2 010 −0.315 + 0.161i 153.0° 0.354 0.125

3 011 −0.230 − 0.269i −130.5° 0.354 0.125

4 100 0.208 − 0.286i -54.0° 0.354 0.125

5 101 0.327 + 0.135i 22.5° 0.354 0.125

6 110 −0.055 + 0.349i 99.0° 0.354 0.125

7 111 −0.352 + 0.028i 175.5° 0.354 0.125

Figure 7.10 The three-qubit geometric sequence state for v = 1.7
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The printed output is

1.0

In code, we can express the power sequence corresponding to ωN as

omega = cis(2*pi/N)
sequence = [omega**k for k in range(N)]

We can also use the cis function to do the same:

N = 8
sequence_cis = [cis(l*2*pi/N) for l in range(N)]

assert all_close(sequence, sequence_cis)

7.2 Converting from phase to magnitude encoding 
with the Hadamard gate
If we have a signal encoded in a periodic quantum state, the angle of the geometric
sequence state contains information about the frequency of the signal. The QFT
allows us to convert that information encoded in the angle of the geometric sequence
state into magnitudes. 

 For example, let’s represent the frequency 1/3 in a single-qubit state. To do this,
we will prepare a single-qubit geometric sequence state with the angle θ = π/3:

state = geom(1, pi/3)

Exercise 7.1
Make the previous sequence into a valid quantum state. 

ω0

ω1

ω2

ω3

ω4

ω5

ω6

ω7

Figure 7.11 Roots of unity ω0, ω1, ω2, …, 
ω N–1 where N = 8 on the unit circle
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The circuit to encode this state and the resulting state table are illustrated in figure 7.12.

In the resulting state, the encoded angle is represented in the phase of the amplitude
corresponding to outcome 1.

However, the amplitudes of the resulting state have equal magnitudes and therefore
equal probabilities for each outcome. If we run this circuit on a quantum computer,
we will not be able to infer the frequency of the signal represented by the state.

 To learn about the encoded signal, we convert the information encoded in the
phase of the geometric sequence state into magnitudes. If we apply an additional Had-
amard gate, the magnitudes of both amplitudes will change. Let’s look at the follow-
ing implementation:

q = QuantumRegister(1)
qc = QuantumCircuit(q)

theta = pi/3
qc.h(q[0])
qc.p(theta, q[0])
qc.h(q[0])

state = qc.run()

Figure 7.13 shows the state before and after applying the last Hadamard gate.

In this state, the encoded angle is translated into the magnitudes of the amplitudes.
The amplitudes of the resulting state have magnitudes cos θ/2 and sin θ/2:

Exercise 7.2
Show that the encoded angle is represented in the phase of the amplitude corre-
sponding to outcome 1.

Out Bin Ampl Dir Ampl bar

0 0 1 0.0°

1 1 0

Out Bin Ampl Dir Ampl bar

0 0 0.71 0.0°

1 1 0.35 + 0.61i 60.0°

Figure 7.12 Phase encoding for a single qubit with θ = π/3

Out Bin Ampl Dir Ampl bar

0 0 0.71 0.0°

1 1 0.35 + 0.61i 60.0°

Out Bin Ampl Dir Ampl bar

0 0 0.75 + 0.43i 30.0°

1 1 0.25 − 0.43i −60.0°

Figure 7.13 Converting difference in phase (θ = π/3) to difference in magnitudes
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from util import is_close

theta = pi/3
assert is_close(abs(state[0]), cos(theta/2))
assert is_close(abs(state[1]), sin(theta/2))

The probability of outcome 0 is cos2 θ/2, and the probability of outcome 1 is sin2 θ/2.
If we run this circuit on a quantum computer, we will be able to use the frequency of
outcomes to infer the encoded angle.

 This pattern of applying a Hadamard gate to a single qubit to retrieve information
encoded in the phases of a quantum state is the simplest example of a QFT. This pat-
tern is shown in figure 7.14. 

7.3 From classical to quantum Fourier transforms
Now that we understand some concepts crucial to Fourier transforms, like roots of
unity, we can dive into more details. In this section, we will review the implementation
of classical Fourier transforms before discussing the quantum counterparts. 

7.3.1 The classical (discrete) Fourier transform

The DFT takes discrete signals (e.g., samples from a continuous signal, like a sound
wave) and computes the frequency components of the signal. The DFT essentially cal-
culates the contribution of each frequency component to an approximation of the
continuous signal by measuring the similarity, or correlation, between the signal and a
set of sinusoidal basis functions of different frequencies. The DFT decomposes the
input signal into multiple frequency bins and determines the magnitude and phase of
each frequency component. 

 When we perform the DFT on a discrete signal {x0, …, xN–1} of length N > 1, we will
get a sequence of complex numbers {y0, …, yN–1}, where each entry is the inner prod-
uct of the given sequence and the corresponding Fourier basis. For 0 ≤ l < N, the lth Fou-
rier basis is

Outcome Amplitude Outcome Amplitude

Figure 7.14 Conversion from phase 
to magnitude encoding in a single-
qubit state with a Hadamard gate



172 CHAPTER 7 The quantum Fourier transform
where ωN = cos (2π/N) + i sin (2π/N). Note that depending on the implementation,

each basis may be multiplied by a common factor 1/N or . We will see that the QFT

uses a constant of .

 For example, for N = 4, and with the notation ω = ω4, the Fourier bases for indi-
ces 0 ≤ l < 4 are

Note that ω0 = 1.
 We can represent each Fourier basis in Python code with a list:

N = 4
omega = cis(2*pi/N)

F_0 = [omega**(0*k) for k in range(N)]
F_1 = [omega**(1*k) for k in range(N)]
F_2 = [omega**(2*k) for k in range(N)]
F_3 = [omega**(3*k) for k in range(N)]

If we inspect the first basis, we see that all its components are equal to 1:

print(F_0)
[(1+0j), (1+0j), (1+0j), (1+0j)]

Alternatively, we can use the following code to find the four Fourier bases:

N = 4

F_0 = [cis(k*0*2*pi/N) for k in range(N)]
F_1 = [cis(k*1*2*pi/N) for k in range(N)]
F_2 = [cis(k*2*2*pi/N) for k in range(N)]
F_3 = [cis(k*3*2*pi/N) for k in range(N)]

Let’s return to our earlier example of samples from a sinusoidal wave:

N = 8
frequency = 1.7
samples = [1/sqrt(N)*cos(2 * pi * frequency * (i / N)) for i in range(N)]

To get the first item of the DFT of this signal, we need to compute the inner product
between the discrete signal and the corresponding Fourier basis (F0). We will use the
inner function from chapter 6:
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def inner(v1, v2):
    assert(len(v1) == len(v2))
    return sum(z1*z2.conjugate() for z1, z2 in zip(v1, v2))

Now we can get the first item:

F_0 = [cis(k*0*2*pi/N) for k in range(N)]
similarity = inner(samples, F_0)

print(round(similarity.real, 5) + 1j*round(similarity.imag, 5))

The printed output is

(0.01814+0j)

We can compute the entire sequence with a list comprehension:

dft = [inner(samples, [cis(k*l*2*pi/N) for k in range(N)]) for l in range(8)]

for x in dft:
    print(round(x.real, 5) + 1j*round(x.imag, 5))

The resulting sequence is

(0.01814+0j)
(-0.11374+0.34545j)
(0.93169-0.99125j)
(0.40522-0.17397j)
(0.36394+0j)
(0.40522+0.17397j)
(0.93169+0.99125j)
(-0.11374-0.34545j)

We can use the fft package in numpy to check that these results match. Note that the
fast Fourier transform (FFT) is a high-performance classical algorithm for computing
the DFT:

f = np.fft.fft(samples)

for x in f:
    print(round(x.real, 5) + 1j*round(x.imag, 5))

The resulting sequence is

(0.01814+0j)
(-0.11374+0.34545j)
(0.93169-0.99125j)
(0.40522-0.17397j)
(0.36394+0j)
(0.40522+0.17397j)
(0.93169+0.99125j)
(-0.11374-0.34545j)
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NOTE In mathematical notation, the DFT of a sequence {x0, …, xN–1} is the

sequence {y0, …, yN–1} defined by , for each 0 ≤ k < N. The inverse

DFT has a positive instead of a negative sign in the exponents: . 

7.3.2 Introducing the QFT and IQFT

Before going into the quantum circuits for the QFT and the inverse QFT (IQFT), we
will use simpler classical code to understand how they work. The QFT performs the
same computation, up to a constant, as the inverse DFT on a state vector. Given a
sequence {x0, …, xN–1} of complex numbers of length n, its Fourier transform (direct or
inverse) is a sequence {y0, …, yN–1} of the same length, where each entry is the sum of
the entries in the given sequence rotated by specific angles (counterclockwise for
direct, clockwise for inverse). 

NOTE In mathematical (ket) notation, the QFT acts on a state |x and maps it to

the state |y defined by , for each 0 ≤ k < N. The IQFT has a

negative instead of a positive sign in the exponents: .

SIMULATING THE IQFT WITH CLASSICAL CODE

We will start with the IQFT because it uses counterclockwise rotations like the DFT to
decompose signals into frequencies. The result of the IQFT is a state where each
amplitude is the sum of the original amplitudes rotated by certain angles. Remember
from chapter 3 that rotations of complex numbers act as multiplication. To simulate
the effect of the IQFT on a quantum state with n qubits, we compute the inner prod-
uct of the state vector and each corresponding Fourier basis state. 

 The general-form state table for a Fourier basis Fl is shown in figure 7.15. Note

the use of the  constant as the magnitude of each entry in all Fourier bases,

making the bases valid quantum states. As you can see, a Fourier basis state is the
geometric sequence state with frequency l.

In code, we can use the following function to create a Fourier basis state in Python.
 

Outcome Amplitude

Figure 7.15 Fourier bases n-qubit quantum state where N = 2n, 
0 ≤ k < N, and 0 ≤ l < N



1757.3 From classical to quantum Fourier transforms
def fourier_basis(N, l):
    return [1/sqrt(N) * cis(k*l*2*pi/N) for k in range(N)]

We will use this fourier_basis function to compute the IQFT of a list representing a
quantum state. The following function simulates the IQFT using simple classical code, so
we call it icft. 

def icft(state):
    N = len(state)
    s = [state[k] for k in range(N)]

    for k in range(N):
        state[k] = inner(s, fourier_basis(N, k))

The IQFT of a quantum state is another quantum state, as shown in figure 7.16, where
each entry is the inner product between the given state and the Fourier basis corre-
sponding to the entry index.

Listing 7.3 Computing the Fourier basis for a given N and l

Listing 7.4 Classical implementation of the IQFT

Exercise 7.3
In the gate-based implementation of the IQFT, the rotations are applied incrementally
with controlled phase rotations. To make it easier to understand the effect of the
nested for loops in the quantum implementation, here is a classical equivalent of
its effect. This function is analogous to the FFT:

from math import log2

def bin_digit(k, j):
    return 1 if k & (1 << j) else 0

def cfft(state):
    n = int(log2(len(state)))
    for j in range(n)[::-1]:
        for k in range(len(state)):
            if bin_digit(k, j) == 0:
                state[k] = 1/sqrt(2)*(state[k] + state[k+2**    

state[k+2**j] = state[k] - sqrt(2)*state[k+2**j]  
            else:
                state[k] *= cis(-pi * (k%2**j)*2**-j)

Verify that this function gives the same output as the FFT (with a constant  and bit

reversal). 

Outcome Amplitude Outcome Amplitude

Figure 7.16 The general form 
of the amplitudes of a quantum 
state before and after applying 
the IQFT

Computes the sum and
difference of the amplitude pair
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SIMULATING THE QFT WITH CLASSICAL CODE

To simulate the QFT, we perform the same computation as the IQFT with negative
angles (the conjugates of each Fourier basis). If we perform a QFT on a quantum
state, the amplitudes will change, as shown in figure 7.17. This is the same as rotating
each amplitude in the state vector clockwise by multiples of the same angle and then
adding up the results. 

NOTE The conjugate  of Fk is the same as F–k if we allow negative values for k.

We can use the following function to classically simulate the application of the QFT to
a list representing a quantum state.

def cft(state):
    N = len(state)
    s = [state[k] for k in range(N)]

    for k in range(N):
        state[k] = inner(s, fourier_basis(N, -k))

Listing 7.5 Classical implementation of the QFT

The single-qubit QFT and IQFT are the Hadamard gate
As we know, a Hadamard gate replaces a pair of amplitudes with their sum and dif-
ference multiplied by the square root of 2. For a single-qubit state with amplitudes z0

and z1, the new amplitudes will be  and .

The Fourier bases for a single qubit are

where ω = cos(π) + i sin(π) = –1.

Therefore,

Outcome Amplitude Outcome Amplitude Figure 7.17 The general form 
of a quantum state before and 
after applying the QFT
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In figures 7.18 and 7.19, we show the result of applying a QFT to three-qubit states
with a single nonzero amplitude, called computational bases. The resulting states can
be thought of as signals whose frequency is the index of the nonzero amplitude.
For example, when the nonzero amplitude is at index 2, the state after applying the

Taking the inner product of the state vector  with F0 and F1 leads to the same

result as applying the Hadamard gate to it.

Each step covers a full
circle, so all eight steps
overlap in the visualization.

Same here; some
steps overlap.
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Figure 7.18 The Fourier transforms of the computational bases for a three-qubit system with nonzero amplitudes 
0, 1, 2, and 3
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QFT covers two full trips around the circle with N = 8 steps. They are also geometric
sequence states. 

When given a frequency encoded in a quantum register, the QFT builds a signal with
that frequency. If the frequency is encoded as one of the computational bases, its Fou-
rier transform is the corresponding Fourier basis. The inverse Fourier transform does
the opposite: given a signal, it creates a representation of its frequency. 
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Figure 7.19 The Fourier transforms of the computational bases for a three-qubit system with 
nonzero amplitudes 4, 5, 6, and 7
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7.4 Quantum circuits for the QFT and IQFT
The quantum-gate-based implementations of the Fourier transform and its inverse mir-
ror the efficient classical implementations of the FFT. On a quantum computer, we can
take advantage of quantum parallelism and interference and perform a QFT with a
small number of instructions. As a result, the QFT is exponentially faster than the FFT.
The number of operations (basic quantum gates) needed for the QFT grows quadrat-
ically with the number of qubits (binary digits). The number of operations (additions
and subtractions) needed for the FFT grows exponentially with the number of binary
digits (see figure 7.20). 

Listing 7.6 contains the implementations of the QFT and IQFT circuits from our
simulator.

def qft(qc, targets, swap=True):
    for j in range(len(targets))[::-1]:
        qc.h(targets[j])
        for k in range(j)[::-1]:
            qc.cp(pi * 2.0 ** (k - j), targets[j], targets[k])

    if swap:
        qc.mswap(targets)

def iqft(qc, targets, swap=True):
    for j in range(len(targets))[::-1]:
        qc.h(targets[j])
        for k in range(j)[::-1]:
            qc.cp(-pi * 2 ** (k - j), targets[j], targets[k])

Listing 7.6 Quantum circuits for the QFT and IQFT

Figure 7.20 A relative 
comparison of the 
operations required to 
compute the QFT and the 
FFT for a growing number 
of qubits or binary digits
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    if swap:
        qc.mswap(targets)

class QFT(QuantumCircuit):
    def __init__(self, m, reversed=False, swap=True):
        super().__init__(QuantumRegister(m))
        targets = range(m)
        if reversed:
            targets = targets[::-1]

        qft(self, targets, swap)

class IQFT(QuantumCircuit):
    def __init__(self, m, reversed=False, swap=True):
        super().__init__(QuantumRegister(m))
        targets = range(m)
        if reversed:
            targets = targets[::-1]

        iqft(self, targets, swap)

We will not give a rigorous proof that the previous quantum implementation matches
the result of taking the inner product of the state with the Fourier bases, but we can
verify its correctness by testing on random input states. These implementations are
designed to take advantage of quantum interference and parallelism.

 To add the QFT and IQFT to quantum circuits, we will use the methods of the
QuantumCircuit class. 

def append_qft(self, reg, reversed=False, swap=True):
    self.append(QFT(len(reg), reversed, swap), reg)

def append_iqft(self, reg, reversed=False, swap=True):
    self.append(IQFT(len(reg), reversed, swap), reg)

Listing 7.7 Methods to append QFT and IQFT to a circuit instance

Deep dive: Efficient classical implementation
The following is a much more efficient version of the classical implementation of
the IQFT shown in the previous section. For each of the n > 0 digits, we traverse
the whole list (of 2n elements) to compute the new values. Therefore, the number
of operations is proportional to n 2n:

def classical_inverse_fourier(state, step, targets):
    n = len(targets)
    sq2 = sqrt(2)
    sq2i = 1/sqrt(2)
    for j in range(n)[::-1]:
        dist = 2**j
        rot = cis(-pi/dist)
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Figure 7.21 shows the circuit for performing a QFT on a four-qubit system. The con-
trolled phase gates rotate amplitudes with 1 in both target and control, so the roles of
target and control qubits are interchangeable. Note that in some cases the swapping is
not needed, or the list of qubits to which the Fourier transforms are applied is reversed.

Figure 7.22 shows the circuit diagram for performing an IQFT on a four-qubit system.
Note that the only difference between the inverse circuit and the circuit in figure 7.21
is the rotation by negative angles.

7.4.1 Understanding the effect of the IQFT on a geometric 
sequence state

Let’s look at how the IQFT works on one of the Fourier bases, such as F13, with a
four-qubit state. We show the steps that recover the frequency of the periodic signal

        rots = [1 for _ in range(dist)]
        r = 1
        for m in range(dist):
            rots[m] = r
            r = r*rot

        for l in range(2**(n-j-1)):
            i = 0
            for k in range(2*l*dist, (2*l+1)*dist):
                state[k] = sq2i*(state[k] + state[k+dist])
                state[k+dist] = (state[k] - sq2*state[k+dist])*rots[i]
                i += 1

Figure 7.21 Circuit diagram of the QFT on a four-qubit system

Figure 7.22 Circuit diagram of the IQFT on a four-qubit system
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represented by F13: basically, its index in the state vector, which is 13, or 1101 in
binary representation. 

 Each step (outer for loop) in the IQFT will reveal one binary digit of the fre-
quency, starting from the right. This is essentially the same as the successive division
method, reviewed next, and is also akin to a binary search. 

Let’s now look at the quantum gate-based implementation of IQFT:

1 Apply the Hadamard gate (H) to the last qubit, and subtract the contribution of
the last digit in terms of phase shifts (figure 7.23). This reveals the last digit of
the encoded integer (1) by making all outcomes ending with 0 impossible.

2 Apply the Hadamard gate to the third qubit, and subtract its contribution to the
phase shifts (figure 7.24). This way, we recover the third digit of the encoded
integer. Only the amplitudes corresponding to outcomes that have the correct
digits in the fourth and third positions are nonzero.

 

Successive division
Here is how the successive division method works. We start by dividing a given dec-
imal number (13) by 2 and record the quotient and remainder. Because 13 = 6·2 +
1, the quotient is 6, and the remainder is 1. The remainder (1) is the first binary digit
of the given number (starting from the right).

Python has a built-in function called divmod that gives the quotient and remainder of
a division. If we use it, we get the expected results:

divmod(13, 2)
(6, 1)

Then we continue the process by applying divmod to the quotients:

divmod(6, 2)
(3, 0)

The second binary digit from the right is 0:

divmod(3, 2)
(1, 1)

The third binary digit from the right is 1:

divmod(1, 2)
(0, 1)

The fourth binary digit from the right is 1, and we are done. The binary representation
of 13 is 1101.
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3 Do the same for the second qubit (figure 7.25).
4 Apply the Hadamard gate to the first qubit to recover the first digit and there-

fore the integer value that was encoded (figure 7.26).
5 Swap the qubits, arriving at the computational basis corresponding to 13, or

1101 in binary format. 
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Figure 7.23 The first step of the IQFT on a four-qubit state, where a Hadamard gate is applied to the qubit 
in position 3, followed by three controlled phase rotations
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Summary
 The QFT is essential in many quantum algorithms. It can convert information

stored in the phase of a quantum state to magnitudes.
 We can represent periodic patterns in quantum states by creating a quantum

state with amplitudes that are discrete samples of a complex signal. The fre-
quency of the encoded signal is reflected in the phases of the amplitudes.
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Figure 7.25 The third step of the IQFT on a four-qubit state, where a Hadamard gate is applied 
to the qubit in position 1, followed by one controlled phase rotation
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 The discrete Fourier transform (DFT) takes discrete signals and computes their
frequency components by measuring the similarity, or correlation, between the
signal and a set of sinusoidal basis functions of different frequencies (Fourier
bases).

 The quantum Fourier transform (QFT) performs the same mathematical oper-
ation as the inverse DFT. The implementation of the QFT uses quantum paral-
lelism and interference so that the number of operations (gates) needed grows
quadratically with the number of qubits (binary digits). The number of opera-
tions needed for the most efficient classical implementation grows exponen-
tially with the number of binary digits.

 The inverse QFT (IQFT) can be used to recover frequency information from
geometric sequence states. 



Using the quantum
Fourier transform
Now that we understand what happens when the quantum Fourier transform
(QFT) and inverse QFT (IQFT) are applied to a quantum state, let’s look at how we
can use them. We will look at examples of two of the most common uses of the
QFT: converting difference in phase to difference in magnitude and efficiently pre-
paring some useful quantum states. 

 In the previous chapter, we saw how to encode a certain frequency into a quan-
tum state in the form of a geometric sequence state. The encoded frequency is
reflected in directions of the amplitudes of a geometric sequence state. In this
chapter, we will use the IQFT to convert difference in phase to difference in mag-
nitude. The magnitudes after applying the IQFT to a geometric sequence state
match the values of the discrete sinc function. We will go deeper into understanding

This chapter covers 
 Introducing the discrete sinc distribution and 

phased discrete sinc quantum states

 Using the IQFT to find the encoded frequency 
of periodic quantum states

 Using the QFT to encode some trigonometric 
distributions in quantum states
186



1878.1 The single-slit experiment: Wave diffraction
the significance of this pattern in both wave diffraction (single-slit experiment) and
quantum states. 

 Encoding a periodic quantum state and decoding its frequency can be seen as
encoding a number (the frequency of the complex sinusoidal signal represented in
the state). In particular, this encoding allows for efficient manipulation of numbers
(e.g., quantum arithmetic, polynomial encoding) that will be used in applications
such as optimization.

 Next, we will use the QFT to prepare some useful quantum states efficiently. We
will see how we can borrow tools from digital signal processing to encode useful trigo-
nometric distributions. Figure 8.1 illustrates the relationships between the concepts
covered in this chapter.

8.1 The single-slit experiment: Wave diffraction
The single-slit experiment is a fundamental physics experiment where a particle
source, typically a light source, is directed through a narrow slit onto a wall. The
experiment demonstrates a foundational principle of quantum mechanics that has a
profound impact on our understanding of the behavior of particles at the quantum
level and has numerous practical applications in science and technology. The pattern
we observe in the single-slit experiment also appears in several quantum computing
algorithms. 

 The setup for the single-slit experiment consists of a light source (a beam of pho-
tons), a barrier with a thin slit, and a screen or detector placed behind the slit. The
light source is usually a laser beam, and the slit is typically less than 0.1 mm wide. The
screen can be white paper or a wall coated with a fluorescent material to make the
light easier to observe.

 As the laser beam sends photons through the slit, a pattern emerges of alternating
dark and light bands. This phenomenon is known as diffraction, and it occurs because
light behaves like a wave and spreads out when it passes through a narrow opening.
The diffraction pattern consists of the central bright spot, known as the central maximum,
surrounded by a series of alternating bright and dark areas, known as the diffraction
maxima and minima, respectively. An example of a diffraction pattern on a screen is
shown in figure 8.2. 

Discrete sinc Cosine powers

Probability distributions

Raised cosine Figure 8.1 A dependency diagram 
of concepts covered in this chapter
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The spacing of the light and dark areas depends on the particle wavelength and the
width of the slit, with narrower slits or longer wavelengths producing wider spacing
between the maxima. As the slit becomes narrower, the diffraction pattern becomes
sharper, and the central maximum becomes more intense. If we plot the diffraction
intensity, as shown in figure 8.3, we can see the central maximum and the diffraction
maxima and minima on either side.

The diffraction pattern created by the single-slit experiment can be used to determine
the wavelength of the laser beam. Similarly, in this chapter, we will show how to use
the analogous pattern in a quantum state to determine the frequency of the encoded
periodic signal.

Slit with w
L

Figure 8.2 The diffraction pattern on a screen resulting from a single-slit experiment

−4 −2 0 2 4

4 2 0 2 4

Figure 8.3 An example plot of 
diffraction intensity based on a 
diffraction pattern where the x 
axis is the distance from the slit
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8.1.1 Introducing the discrete sinc function

The distribution created when plotting the diffraction pattern in the single-slit experi-
ment, as shown in figure 8.3, appears frequently in the field of digital signal processing.
The function that defines this distribution is called the sinc function (pronounced
“sink”). The sinc function is expressed as 

where x is a real number.

We will use a function we call the discrete sinc, or sincdn function, for a positive integer
n defined by 

where x is a real number.
 The discrete sinc function is the discrete version of the sinc function pattern. For

example, in figure 8.4, we plot sincd3 for –8 ≤ x ≤ 8. 

8.2 Encoding a periodic signal using discrete sinc 
quantum states
In chapter 7, we learned how to encode a (complex) geometric sequence as a peri-
odic quantum state. In summary, for n qubits and a frequency 0 ≤ v < 2n, we encode

the geometric sequence  for 0 ≤ k < 2n, where . The general form

of a geometric sequence state is shown in figure 8.5. This geometric sequence is called
a complex sinusoid in digital signal processing. 

Product form of the sinc function
The sinc function can also be written as an infinite product:
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NOTE Throughout the book, we will interchangeably use either an angle or
its corresponding value mapped to a relevant numerical range. In this case, θ
and v are related by the formula θ/(2π) = v/2n.

In the previous chapter, we introduced the quantum circuit to encode a geometric
sequence state. We define the same circuit in the following listing with an angle
parameter theta (in radians). 

from sim_circuit import QuantumRegister, QuantumCircuit

def geometric_sequence_circuit(n, theta):

    N = 2**n

    q = QuantumRegister(n)
    qc = QuantumCircuit(q)

    for j in range(n):           
        qc.h(q[j])

    for j in range(n):           
        qc.p(2 ** j * theta, q[j])

    return qc

Listing 8.1 Creating a circuit for encoding a geometric sequence state

Figure 8.4 Plot of sincd3 
for –8 ≤ x ≤ 8

Outcome Amplitude

Figure 8.5 An n-qubit geometric sequence 
state for an angle θ, where 0 ≤ k < 2n

Iterates through 
all n qubits
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Let’s break down the construction of this circuit. The goal is to create a state where all

the amplitudes have the same magnitude, , and the amplitude of the outcome

with index 0 ≤ k < 2n has direction kθ. To create this state, we apply a Hadamard gate
and a phase gate to each qubit in the circuit. For each target qubit, j, the angle param-
eter of the phase gate is 2jθ.

 For example, let’s look at the circuit for encoding a geometric sequence state with
n = 3 qubits and θ = π/3:

1 A Hadamard gate is applied to each of the three qubits (figure 8.6).

a The first Hadamard gate is applied to the initial state, so the amplitudes cor-

responding to outcomes 0 and 1 become , and the rest of the amplitudes

remain 0.
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Figure 8.6 The state tables of a three-qubit state after applying a Hadamard gate to each qubit, 
starting with the default state
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b When the second Hadamard gate is applied to target qubit 1, there are only
two pairs with a nonzero amplitude. All the amplitudes corresponding to
outcomes in these pairs (outcomes 0 and 2 and outcomes 1 and 3) become

the previous value of the 0 side of the pair multiplied by .

c Similarly, when the third Hadamard gate is applied to target qubit 2, all the
amplitudes become the previous value of the 0 side of the pair multiplied by

. Therefore, the amplitudes of the state after applying a Hadamard gate

to each qubit are all .

2 A phase gate with the angle 20θ = θ is applied to target qubit 0 (figure 8.7). In
chapter 3, we learned that phase gates only change the 1 side of a pair of ampli-
tudes. This means only the amplitudes corresponding to binary outcomes with
the value 1 in the target qubit position will change. So, all the amplitudes corre-
sponding to an outcome with binary digit 1 in position 0 (the rightmost digit)
will be multiplied by cis(θ) (rotated by θ). As we can see in the second state

table in figure 8.7, the amplitudes of the 1 side of each pair become .

3 A phase gate with the angle 21θ = 2θ is applied to target qubit 1 (figure 8.8).
Only the amplitudes corresponding to outcomes with binary digit 1 in position
1 (the middle digit) change. The amplitudes corresponding to outcomes with
digit 1 in the target qubit position are multiplied by cis(2θ). The directions of
these amplitudes are rotated by 2θ or 120°, which we can clearly see when com-
paring the state tables.

4 A phase gate with the angle 22θ = 4θ is applied to target qubit 2 (figure 8.9).
The amplitudes corresponding to binary outcomes with the digit 1 in the target
qubit position (the rightmost digit) are multiplied by cis(4θ).

Out Bin Ampl Dir Ampl bar

0 000 0.35 0.0°

1 001 0.35 0.0°

2 010 0.35 0.0°

3 011 0.35 0.0°

4 100 0.35 0.0°

5 101 0.35 0.0°

6 110 0.35 0.0°

7 111 0.35 0.0°

Out Bin Ampl Dir Ampl bar

0 000 0.35 0.0°

1 001 0.18 + 0.31i 60.0°

2 010 0.35 0.0°

3 011 0.18 + 0.31i 60.0°

4 100 0.35 0.0°

5 101 0.18 + 0.31i 60.0°

6 110 0.35 0.0°

7 111 0.18 + 0.31i 60.0°

Figure 8.7 The state tables before and after applying a phase gate to target qubit 0 with angle θ = π/3
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It is helpful to visualize the resulting state with a tree diagram: see figure 8.10. In this
diagram, the amplitude of each outcome is the product of the complex numbers on
the edges of the path to it from the root of the tree. The direction of each amplitude
is the sum of the rotation angles on the edges of the path.

 When we encode a geometric sequence state with n qubits and an angle θ, each
qubit 0 ≤ j < n contributes a phase shift of 2jθ through a phase gate applied to target
qubit j. Interference will ensure that the amplitude of the outcome with index k has
direction kθ for each 0 ≤ k < 2n. The Hadamard gates make all amplitudes have the same

magnitude, . The result is a product state that can be built recursively, qubit by

qubit. Figure 8.11 shows the contribution to the amplitudes when applying a Hadamard
gate and phase gate to target qubit 0, target qubits 0 < k < n–1, and target qubit n–1.

Deep dive: Ket notation
We can use Ket notation to express a three-qubit geometric sequence state with angle θ:

We can express an n-qubit geometric sequence state as

Out Bin Ampl Dir Ampl bar

0 000 0.35 0.0°

1 001 0.18 + 0.31i 60.0°

2 010 0.35 0.0°

3 011 0.18 + 0.31i 60.0°

4 100 0.35 0.0°

5 101 0.18 + 0.31i 60.0°

6 110 0.35 0.0°

7 111 0.18 + 0.31i 60.0°

Out Bin Ampl Dir Ampl bar

0 000 0.35 0.0°

1 001 0.18 + 0.31i 60.0°

2 010 –0.18 + 0.31i 120.0°

3 011 –0.35 180.0°

4 100 0.35 0.0°

5 101 0.18 + 0.31i 60.0°

6 110 –0.18 + 0.31i 120.0°

7 111 -0.35 180.0°

Figure 8.8 The state tables before and after applying a phase gate to target qubit 1 with angle 2 θ = 2π/3

Out Bin Ampl Dir Ampl bar

0 000 0.35 0.0°

1 001 0.18 + 0.31i 60.0°

2 010 –0.18 + 0.31i 120.0°

3 011 –0.35 180.0°

4 100 0.35 0.0°

5 101 0.18 + 0.31i 60.0°

6 110 –0.18 + 0.31i 120.0°

7 111 –0.35 180.0°

Out Bin Ampl Dir Ampl bar

0 000 0.35 0.0°

1 001 0.18 + 0.31i 60.0°

2 010 –0.18 + 0.31i 120.0°

3 011 –0.35 180.0°

4 100 –0.18 - 0.31i –120.0°

5 101 0.18 – 0.31i –60.0°

6 110 0.35 –0.0°

7 111 0.18 + 0.31i 60.0°

Figure 8.9 The state tables before and after applying a phase gate to target qubit 2 with angle 4 θ = 4π/3
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Figure 8.10 A tree diagram representation of the encoding pattern for a geometric 
sequence state with n = 3 qubits and an angle π/3
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8.2.1 Phase-to-magnitude frequency encoding with the IQFT

Now let’s look again at the effect of applying the IQFT to a geometric sequence
state. We will switch to using the frequency v directly instead of its corresponding
angle θ = v 2π/2n. The code for the circuit that combines the encoding of a geometric
sequence with frequency v and the application of IQFT is shown next. 

from math import pi

def encode_frequency(n, v):
    q = QuantumRegister(n)
    qc = QuantumCircuit(q)

    for j in range(n):
        qc.h(q[j])

Exercise 8.1
The circuit to encode a geometric sequence state applies a Hadamard gate to each
qubit and then a phase gate to each qubit. Instead, we can apply a Hadamard gate
and a phase gate to each qubit in a single for-loop.

def geometric_sequence_circuit_single_loop(n, theta):

    N = 2**n

    q = QuantumRegister(n)
    qc = QuantumCircuit(q)

    for j in range(n):
        qc.h(q[j])
        qc.p(2 ** j * theta, q[j])

    return qc

Create a quantum state using this function, and then check that it is a geometric
sequence state.

Listing 8.2 Creating the circuit for encoding a frequency in a quantum state

Target qubit 0 Target qubits 0 < − 1k n< T − 1arget qubit n

Outcome Amplitude Outcome Amplitude Outcome Amplitude

Figure 8.11 In a geometric sequence state with n qubits and an angle θ, the amplitude corresponding to each 
outcome 0 < k < 2n is the product of the factor for the target qubit digit in the binary form of the outcomes.
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    for j in range(n):
        qc.p(2 * pi / 2 ** (n - j) * v, q[j])  

    qc.report('geometric_sequence')

    qc.append_iqft(q)

    qc.report('iqft')

    return qc

NOTE As we have done in previous chapters, we can use the report() method
of the circuit to create a snapshot report containing the transformations
applied since the last report and the states before and after applying those
transformations. We can use such reports to visualize the encoding process. 

ENCODING AN INTEGER AS A FREQUENCY

Let’s look at the encoding of frequency v = 4 in a three-qubit state (n = 3). Figure 8.12
shows the encoding of the corresponding geometric sequence. 

Now we apply the IQFT to the state, as shown in figure 8.13. After applying the IQFT,
we get a state where the magnitudes of the amplitudes reflect the frequency of the
geometric sequence. In this example, the encoded frequency is an integer, so the
magnitude of the amplitude corresponding to outcome 4 is 1, and all the other ampli-
tudes are 0. 

ENCODING A NON-INTEGER AS A FREQUENCY

If we encode a non-integer frequency, such as v = 4.7, in a three-qubit state (n = 3), the
pattern is different. Figure 8.14 shows the state table after encoding the geometric
sequence state, and figure 8.15 shows the state table after applying the IQFT. 

 To help understand this result, let’s visualize the amplitudes of the resulting state
with a color wheel, as shown in figure 8.16. In the resulting state, the directions are π/8
radians or 22.5 degrees apart, increasing from the first (amplitude 0) to the floor (the
rounded-down integer value) of the encoded frequency (in this example, 4) and
decreasing (in reverse order) from the first toward the ceiling (the rounded-up integer

The phase gate angle is 2jθ; 
we use the equivalent angle 
2jθ = v 2π/2n–j.

Out Dir Ampl bar
0 0.0°
1
2
3
4
5
6
7

Out Dir Ampl bar
0 0.0°
1 180.0°
2 –0.0°
3 180.0°
4 –0.0°
5 180.0°
6 –0.0°
7 180.0°

Figure 8.12 The encoding of a geometric sequence state with n = 3 qubits and angle 

, starting with the default state
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value) of the encoded frequency (in this example, 5). We can see in figure 8.16 that
the magnitude of the amplitude corresponding to outcome 5 is the largest because it
is the closest integer to the encoded frequency. The magnitude corresponding to out-
come 4 is the second largest because it is the next-closest integer.

 The magnitudes reflect an approximation of the frequency of the periodic state in
terms of integer frequencies. Figure 8.17 shows the state table and vector representa-
tion of the amplitudes of a three-qubit state with the frequency v = 4.3.

The last part of the circuit
is the qubit swaps.

Out Dir Ampl bar
0
1
2
3
4
5
6
7

Out Dir Ampl bar
0
1
2
3
4
5
6
7

Figure 8.13 The state tables before and after applying the IQFT to the geometric sequence state with n = 3 

qubits and angle 

Out Dir Ampl bar
0 0.0°
1
2
3
4
5
6
7

Out Dir Ampl bar
0 0.0°
1 –148.5°
2 63.0°
3 –85.5°
4 126.0°
5 –22.5°
6 –171.0°
7 40.5°

Figure 8.14 The encoding of a geometric sequence state with n = 3 qubits and an angle , 

starting with the default state

Out Dir Ampl bar
0 0.0°
1 –148.5°
2 63.0°
3 –85.5°
4 126.0°
5 –22.5°
6 –171.0°
7 40.5°

Out Dir Ampl bar
0 20.2°
1 42.7°
2 65.2°
3 87.8°
4 110.2°
5 –47.3°
6 –24.8°
7 –2.3°

Figure 8.15 The state tables before and after applying the IQFT to the geometric sequence state with n = 3 

qubits and an angle 
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8.2.2 Some useful numerical forms of the frequency encoding pattern

The amplitudes of a quantum state after encoding a frequency value v form a pattern
we will see in many applications throughout this book. This pattern shows up in one
of the most important quantum computing algorithms: quantum phase estimation,
which we will discuss in the next chapter. 

 At the beginning of this chapter, we talked about the sinc and discrete sinc (sincdn)
functions. We can express the sincdn function for a real number x as

Exercise 8.2
Justify that using the circuit in listing 8.2 to encode a frequency 0 ≤ v < 2 in a single-
qubit state is the same as the phase-to-magnitude method we saw in chapter 7. The
phase is θ = vπ. 

Figure 8.16 The amplitude pattern for the encoding of v = 4.7 in a three-qubit state

Outcome Direction Magnitude Amplitude bar

0 20.2° 0.11

1 42.8° 0.10

2 65.2° 0.12

3 87.8° 0.16

4 110.3° 0.37

5 –47.2° 0.86

6 –24.7° 0.21

7 –2.2° 0.13

0
1

2
3

4

5

6
7

Figure 8.17 The amplitude pattern for the encoding of v = 4.3 in a three-qubit state

Outcome Direction Magnitude Amplitude bar

0 –42.8° 0.10

1 –20.3° 0.11

2 2.2° 0.13

3 24.7° 0.21

4 47.2° 0.86

5 –110.3° 0.37

6 –87.8° 0.16

7 –65.2° 0.12

0
1
2
3

4

5

6
7
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If we have a quantum state with n qubits and an encoded frequency v, after applying the
IQFT, the magnitudes of the amplitude corresponding to each outcome 0 ≤ k < 2n will be

The magnitudes match the discrete sinc function. As we saw in the examples, if the
encoded value is a non-integer, the amplitudes also have a phase. So, we will call the
resulting state a phased discrete sinc state. 

 For example, let’s create the three-qubit state shown in figure 8.17:

n = 3
v = 4.3
qc = encode_frequency(n, v)
state = qc.run()

Let’s check that the magnitudes of the state match the outputs of the function |sin-
cdn((v–k)π)| for 0 < k ≤ 2n, where n = 3 and v = 4.3. We will use the following prod func-
tion to compute each product of cosines:

def prod(iterable):
    p = 1
    for n in iterable:
        p *= n
    return p

We can use the following assert statement to check the magnitudes of the example
state:

from math import cos
from util import all_close

N = 2**n
assert all_close([abs(state[k]) for k in range(N)], [
    abs(prod(cos((v - k) * pi / 2 ** (m + 1)) for m in range(n))) for k in
    range(N)])

We can create a phased discrete sinc state using the following function:

from util import cis

def phased_sincd(n, v):
    N = 2 ** n
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    return [prod(
        cos((v - k) * pi / 2 ** (j + 1)) * cis((v - k) * pi / 2 ** (j + 1))
        for j in range(n)) for k in range(2 ** n)]

Let’s double-check that the outcome of this function for n = 3 and v = 4.3 matches the
example state created using the encode_frequency function:

assert all_close(state, phased_sincd(3, 4.3))

The general form of a phased discrete sinc state using the same form as in the
phased_sincd function is shown in figure 8.18. 

We can express the phased discrete sinc state in other useful forms. We do this because
these formulas help with frequency estimation, as we will see later in the book.

 In figure 8.18, the amplitudes of a phased discrete sinc are expressed as a product.
We know that the product of complex numbers is effectively rotation. Therefore, the
product of complex numbers

can also be expressed as

where N = 2n.
 We can use this cis expression, combined with the product of cosines, to create a

phased discrete sinc quantum state with the following Python code:

def phased_sincd_combined_cis(n, v):
    N = 2 ** n
    return [prod(cos((v - k) * pi / 2 ** (m + 1)) for m in range(n)) * cis(
        (N - 1) / N * (v - k) * pi) for k in range(2 ** n)]

Outcome Amplitude Magnitude

Figure 8.18 The general form of a phased discrete sinc state with n qubits, where 0 ≤ k < 2n, and an 
encoded frequency v, where 0 ≤ v < 2n
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Let’s check that this form also creates the phased discrete sinc state with n = 3 and v = 4.3:

assert all_close(state, phased_sincd_combined_cis(3, 4.3))

The general form of a phased discrete sinc state using the form in the phased_sincd_
combined_cis function is shown in figure 8.19. 

If v is a non-integer, the set of directions of the amplitudes is determined by the deci-
mal part of the value, , but the order will differ based on . The general form
of the state, which shows the differences in direction using the decimal part of the
encoded value, is shown in figure 8.20. 

Exercise 8.3
Write code that uses random states to verify the following alternative expression for
the amplitudes of a periodic n-qubit quantum state, with N = 2n.

Outcome Amplitude Magnitude

Figure 8.19 The general form of a phased discrete sinc state with n qubits, where 0 ≤ k < 2n, and an encoded 
frequency v, where 0 ≤ v < 2n

Outcome Amplitude

Outcome Amplitude Direction Magnitude

Figure 8.20 The general form of a phased discrete sinc quantum state with n qubits, where 0 ≤ k < 2n, and an 
encoded frequency v, where 0 ≤ v < 2n
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NOTE For n qubits and any real number v, not necessarily in the interval 0,
2n, we can encode the geometric sequence for the angle v 2π/2n. This way, all
values that differ by a multiple of 2n are mapped to the same geometric
sequence state because adding any number of full rotations to a direction does
not change it. For example, for n = 3 qubits, encoding v = 4.7 and v = 12.7 cre-
ates the same state.

8.2.3 Reversed qubit implementation of phased discrete sinc 
quantum states

We can use an alternative implementation for encoding a phased discrete sinc
quantum state that avoids the qubit swapping step in the IQFT. First we will build a
geometric sequence state with amplitudes corresponding to outcomes in the
reverse order as in the previous implementation. For example, if n = 3, the ampli-
tude that corresponded to the outcome 1 ('001') in the previous implementation
will now be the amplitude corresponding to the outcome 4 ('100'). The amplitude
values in the normal index sequence [0, 1, 2, 3, 4, 5, 6, 7] will be reordered as [0, 4,
2, 6, 1, 5, 3, 7]. 

 In the alternative implementation, we apply phase gates to the target qubits
with the reverse order of angles to create a geometric sequence state with qubits in

Exercise 8.4
Verify that the amplitudes of a phased discrete state can be expressed recursively,
as shown in the following tree for a three-qubit state:
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a reversed order. The quantum circuit implementation is shown in the following
listing.

def geom_alt(n, v):
    q = QuantumRegister(n)
    qc = QuantumCircuit(q)

    for j in range(n):
        qc.h(q[j])

    for j in range(n):
        qc.p(pi * 2 ** -j * v, q[j])  

    return qc

Let’s use this method to create a phased discrete sinc state with n = 3 qubits and v = 4. The
state before and after preparing the geometric sequence using the alternative method is
shown in figure 8.21. We can see that the angles in the circuit in figure 8.21 are in the
reverse order of the angles in the circuit used for the previous method in figure 8.12.

Now we will apply the IQFT to the qubits in reversed order without swapping at the
end. The complete circuit is shown next.

def encode_frequency_q_alt(n, v):
    q = QuantumRegister(n)
    qc = QuantumCircuit(q)

    for j in range(n):
        qc.h(q[j])
        qc.p(pi * 2 ** -j * v, q[j])

    qc.report('signal')

Listing 8.3 Creating the circuit for the reversed geometric sequence state

Listing 8.4 Creating the frequency encoding circuit with reversed qubit order

The phase gate angle is 2n–1–j θ 
(n – 1 – j is the reversed qubit 
index). We use the equivalent 
angle 2n–1–j θ = 2n/2j+1 θ = 
2n/2j+1v 2 π/2n = v π/2j.

Out Dir Ampl bar
0 0.0°
1
2
3
4
5
6
7

Out Dir Ampl bar
0 0.0°
1 –0.0°
2 –0.0°
3 –0.0°
4 180.0°
5 180.0°
6 180.0°
7 180.0°

Figure 8.21 Encoding a geometric sequence state using the reverse index order 

with n = 3 qubits and an angle 
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    qc.append_iqft(q, reversed=True, swap=False)  

    qc.report('iqft')

    return qc

Figure 8.22 shows the state tables and circuit for applying the IQFT to the qubits in
reversed order and without swapping. The resulting state is the same as with the origi-
nal method.

Next, let’s look at the example with n = 3 qubits and v = 4.7 using the alternative
method. The geometric sequence state has the same amplitudes in a different order
than in the previous method, as shown in figure 8.23.

Next, we apply the IQFT to the qubits in reversed order and without swapping at the
end, as shown in figure 8.24. Once again, the resulting state is the same as the state
created using the original method. The only difference is that we got to skip the swaps
in the IQFT, making the circuit more efficient. 

Applies the IQFT to 
qubits in reverse order 
and skips the qubit 
swapping in the IQFT

In this circuit, there
are no swaps!

Out Dir Ampl bar
0
1
2
3
4
5
6
7

Out Dir Ampl bar
0
1
2
3
4
5
6
7

Figure 8.22 The state tables before and after applying the IQFT (without swaps)

Out Dir Ampl bar
0 0.0°
1
2
3
4
5
6
7

Out Dir Ampl bar
0 0.0°
1 126.0°
2 63.0°
3 –171.0°
4 –148.5°
5 –22.5°
6 –85.5°
7 40.5°

Figure 8.23 The encoding of a geometric sequence state using the reverse index 

order with n = 3 qubits and angle 
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8.3 Discrete sinc as a sequence of coin flips
In chapter 4, we looked at encoding a binomial distribution in a quantum state. As a
reminder, the binomial distribution is a probability distribution that models the num-
ber of successes in a fixed number of sequential and independent trials. Each trial
results in one of two possible outcomes, commonly called success and failure, or 0 and
1. The binomial distribution can be used to describe a series of coin tosses. 

 We can also model the discrete sinc distribution as a sequence of coin tosses. If the
total number of tosses is n, the bias of the coin tossed at trial 0 ≤ m < n depends on the
previous toss results. If the decimal representation of the binary number formed with
the results of the first m – 1 flips is k, with 0 ≤ k < 2m, the probability of getting 0 or 1 in

the mth flip is  or , respectively.

 Let’s look at an example for n = 3 tosses and a value v = 4.7. For the first step (or
toss), m = 0:

 The probability of getting 0 is .

 The probability of getting 1 .

For the second toss (m = 1),

 If the first toss was 0 (k = 0),

– The probability of getting 0 is .

– The probability of getting 1 is .

 If the first toss was 1 (k = 1),

– The probability of getting 0 is .

– The probability of getting 1 is .

Out Dir Ampl bar
0 0.0°
1 126.0°
2 63.0°
3 –171.0°
4 –148.5°
5 –22.5°
6 –85.5°
7 40.5°

Out Dir Ampl bar
0 20.2°
1 42.7°
2 65.2°
3 87.7°
4 110.2°
5 –47.3°
6 –24.8°
7 –2.3°

Figure 8.24 The state tables before and after applying the IQFT (without swaps)
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The probabilities for each toss are shown in figure 8.25. The following function vali-
dates these probabilities:

from util import is_close
from math import sin

def discrete_sinc_by_digit(n , v):

    probs = [_ for _ in range(2**n)]
    for l in range(2**n):               
        s = bin(l)[2:].zfill(n)
        assert(len(s) == n)
        p = 1
        k = 0
        for m in range(n):   
            if s[m] == '0':
                p *= cos((v - k)*pi/2**(m+1))**2
            else:
                p *= sin((v - k)*pi/2**(m+1))**2
                k += 2**m

        probs[k] = p

    return probs

The probability of
the first toss being 1

The probability of
the first toss being 0

The probabilities of getting
0 and 1 on the second toss
if the first is 1

The probabilities of getting
0 and 1 on the second toss
if the first is 0

Figure 8.25 The probability of getting a 0 or 1 with each of the three tosses

Iterates through all 
the possible sequences 
(binary strings) of 
outcomes for n trials

Iterates through each 
digit in the possible 
sequence (binary 
string) of outcomes
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n = 3
v = 4.7

probs = discrete_sinc_by_digit(n, v)
for k in range(len(probs)):
    assert is_close(probs[k], prod(cos((v-k)*pi/2**(j+1)) for j in range(n))**2)

We can also compute the probability for each possible sequence of outcomes with the
following recursive function:

def recursive_discrete_sinc(n, v):
    if n == 1:
        return [cos(v*pi/2)**2, sin(v*pi/2)**2]

    p = recursive_discrete_sinc(n-1, v)

    return [p[k] * cos((v - k) * pi / 2 ** n) ** 2 for k in
            range(2 ** (n - 1))] + [p[k] * sin((v - k) * pi / 2 ** n) ** 2
                                    for k in range(2 ** (n - 1))]

We can also model a sequence of n coin tosses with probabilities defined by n and the fre-
quency v several times and examine the frequency we observe each possible sequence.
The function can be used to simulate a given number (count) of n coin tosses:

import numpy as np

def discrete_sinc_coin_flips(n, v, count=10000):
    samples = []
    for _ in range(count):
        k = 0
        for m in range(n):
            flip = np.random.binomial(1, sin((v-k)*pi/2**(m+1))**2)
            k += flip*2**m

        samples.append(k)

    return samples

Figure 8.26 illustrates the samples returned from discrete_sinc_coin_flips for v =
4.7 for n = 1, n = 2, and n = 3. Note that if v is a real value that is not in the interval 0 ≤
v < 2n, the encoded frequency will be v mod 2n. This is why for n = 1 and n = 2, the
actual encoded frequency is 0.7. The histograms show the frequency of each outcome
(in decimal form) in the 10,000 samples. The line plot shows the discrete sinc proba-
bility distribution for the same values n and v. We can see that the results closely match
the discrete sinc probability distribution. 

 Figure 8.27 shows the same visualization for v = 4.5. The magnitudes correspond-
ing to outcomes 4 and 5 are equal. 

Asserts that the probability
of the sequence of outcomes

matches the probabilities
shown in the tree
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8.4 Encoding trigonometric distributions in a quantum 
state
As we have discussed, random sampling from probability distributions is one of the most
promising near-term applications for quantum computing. We have already looked at a
couple of examples where we encode a certain probability distribution, such as the uni-
form distribution, in a quantum state for sampling. Generally, we prepare a quantum
state with n qubits, where the probabilities of the outcomes represent the probabilities
of the distribution. We only encode discrete probabilities in a quantum state, so we can
only approximate a continuous distribution with a discretized version. 

 The uniform distribution is straightforward to encode; we simply apply a Hadam-
ard gate to each qubit. Many other distributions that appear in other problems are
more complex to encode in a quantum state. Preparing quantum states that reflect
specific distributions, often referred to as state preparation, is very important in quan-
tum computing. State preparation is an area that is actively researched today. 

 Bell-shaped distributions, such as the normal distribution, are important in com-
putations for many applications, including statistics, financial modeling, and machine
learning. Encoding a discretized normal distribution in a quantum state is notoriously

Figure 8.26 Frequency of outcomes and discrete sinc probability distribution for v = 4.7 and n = 1, n = 2, and 
n = 3. Note that for n = 1 and n = 2, the actual encoded frequency is 0.7.

Figure 8.27 Frequency of outcomes and discrete sinc probability distribution for v = 4.5 and n = 1, n = 2, and 
n = 3. Note that for n = 1 and n = 2, the actual encoded frequency is 0.5
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difficult. In some problem contexts, an approximation for the normal distribution is
satisfactory. The examples in this section show how we can use the QFT to efficiently
encode approximations for the normal distribution in a quantum state.

8.4.1 Raised cosine

In 1961, Raab and Green introduced the idea of using the raised cosine distribution as
an approximation for the normal distribution.1 This can only be used in cases where
the long tails of the normal distribution can be ignored. 

 The following probability density function defines the raised cosine distribution

The normal distribution
The normal distribution, often referred to as the Gaussian distribution, is a fundamen-
tal probability distribution in statistics. It was named the normal distribution because
it occurs frequently in everyday situations, such as the heights in a large adult popu-
lation and the birth weights of newborns.

The normal distribution has several distinctive features:

 It has a symmetric bell-shaped curve.
 The mean and median are equal.
 About 68% of the data falls within one standard deviation of the mean, about

95% falls within two standard deviations of the mean, and about 99.7% falls
within three standard deviations of the mean.

1 David H. Raab and Edward H. Green. A cosine approximation to the normal distribution. Psychometrika, 26(4):
447–450, 1961.

Figure 8.28 The standard 
deviations of the normal distributionMean

0.15%
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The raised cosine probability density function is shown in figure 8.29 where µ is a real
number and s is a positive number for µ – s ≤ x ≤ µ + s and 0 for x outside of this range.

To encode the raised cosine in a quantum state, we will borrow ideas from digital sig-
nal processing. Specifically, we will use well-chosen starting frequencies. These fre-
quencies can be derived from the Fourier coefficients of the signal corresponding to
the specific state. Without going into the details of how frequencies are chosen, for
the raised cosine, we encode two coefficients in the amplitudes corresponding to out-
come 0 and outcome 2n–1. Then we apply the QFT to the qubits in reverse order and
without swaps. The probabilities of the resulting state match those of the discretized
raised cosine distribution for s = 2n–1:

where 0 ≤ x ≤ 2n.
 The simplest example is the raised cosine where µ = s = 2n–1. In this case, we can

simplify the probability density function:

where 0 ≤ x ≤ 2n.

TIP Remember that .

Let’s look at an example where n = 3 and therefore µ = s = 2n–1 = 4. First we encode the
starting frequencies in the amplitudes of the state (figure 8.30).

0

1/s

μ − s μ+ sμ

Figure 8.29 The raised cosine 
probability density function
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Next we apply the QFT to the qubits in reverse order and without swaps (figure 8.31).
The probabilities of the resulting state reflect the raised cosine distribution for µ = s =
2n–1, as shown in the resulting state table in figure 8.32.

For a general value µ, the resulting state will have amplitudes and probabilities as shown
in the state tables in figure 8.33. To create the state with these encoded frequencies, we
can use the same gates as for the previous example, but the angle of the phase rotation
will be determined by µ. The function for creating the circuit to encode the raised
cosine in a quantum state with n qubits is shown in the following listing.

 
 

Figure 8.30 Encoding the starting frequencies for the raised cosine in the amplitudes of a three-qubit quantum 
state

Out Bin Ampl Dir Ampl bar
0 000 1 0.0°
1 001 0
2 010 0
3 011 0
4 100 0
5 101 0
6 110 0
7 111 0

Out Bin Ampl Dir Ampl bar
0 000 0.71 0.0°
1 001 0.00
2 010 0.00
3 011 0.00
4 100 –0.71 –180.0°
5 101 0.00
6 110 0.00
7 111 0.00

Out Bin Ampl Dir Ampl bar
0 000 1 0.0°
1 001 0
2 010 0
3 011 0
4 100 0
5 101 0
6 110 0
7 111 0

Out Bin Ampl Dir Ampl bar
0 000 0.71 0.0°
1 001 0.00
2 010 0.00
3 011 0.00
4 100 –0.71 –180.0°
5 101 0.00
6 110 0.00
7 111 0.00

Figure 8.31 Applying the QFT to the qubits in a three-qubit state in reverse order (without swaps)

Outcome Amplitude Probability

Outcome Amplitude Probability

Figure 8.32 The general state tables for encoding the raised cosine probability density function for µ = s = 2n–1 
in a quantum state
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def raised_cosine(n, mu):
    N = 2 ** n
    assert (0 <= mu < 2 ** n)

    q = QuantumRegister(n)
    qc = QuantumCircuit(q)

    qc.h(q[n - 1])
    qc.p(-pi * mu / N * 2, q[n - 1])

    qc.report('fourier_coefficients')

    qc.append_qft(q, reversed=True, swap=False)

    qc.report('qft')

    return qc

For example, let’s use this function to encode the raised cosine distribution in the
probabilities of a three-qubit state with µ = 3.25:

qc = raised_cosine(3, 3.25)
state = qc.run()

We can use the following code to check that the amplitudes of the state match the
expected amplitudes (as shown in figure 8.33):

from math import sqrt

N = 8
mu = 3.25
a = [sqrt(2/N) * cos((k - mu)*pi/N) * cis((k-mu)*pi/N) for k in range(N)]
assert all_close(state, a)

We can also check that the probabilities align with the raised cosine distribution for s
= 2n–2 = N/2:

s = N / 2
p = [1 / (2 * s) * (1 + cos((x - mu) / s * pi)) for x in range(N)]
p1 = [1 / s * cos((x - mu) / (2 * s) * pi) ** 2 for x in range(N)]

Listing 8.5 Creating the circuit for encoding the raised cosine distribution

Outcome Amplitude Probability

Outcome Amplitude Probability

Figure 8.33 The general state tables for encoding the raised cosine probability density function in a quantum 
state
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probs = [2/N*(cos((k - mu)*pi/N))**2 for k in range(N)]

assert all_close(p, probs)
assert all_close(p1, probs)

Figure 8.34 shows examples of encoding the raised cosine distribution in a three-qubit
quantum state with µ = 3.25, µ = 3.5, and µ = 3.75. 

8.4.2 Other trigonometric functions

We can use the same method to encode the raised cosine distribution and other trigo-
nometric functions in a quantum state. For example, we can use well-chosen starting
frequencies for the function sin4 to encode an even closer approximation of the nor-
mal distribution. The state tables in figure 8.35 show the starting frequencies encoded
in the amplitudes of the state and the probabilities after applying the QFT. 

 

Out Dir Mag Ampl bar
0 0.0° 0.71
1 0.00
2 0.00
3 0.00
4 –146.3° 0.71
5 0.00
6 0.00
7 0.00

Out Dir Mag Ampl bar
0 0.0° 0.71
1 0.00
2 0.00
3 0.00
4 –157.5° 0.71
5 0.00
6 0.00
7 0.00

Out Dir Mag Ampl bar
0 0.0° 0.71
1 0.00
2 0.00
3 0.00
4 –168.7° 0.71
5 0.00
6 0.00
7 0.00

Out Dir Mag Ampl bar
0 –73.1° 0.15
1 –50.6° 0.32
2 –28.1° 0.44
3 –5.6° 0.50
4 16.9° 0.48
5 39.4° 0.39
6 61.9° 0.24
7 84.4° 0.05

Out Dir Mag Ampl bar
0 –78.8° 0.10
1 –56.2° 0.28
2 –33.8° 0.42
3 –11.2° 0.49
4 11.3° 0.49
5 33.8° 0.42
6 56.3° 0.28
7 78.8° 0.10

Out Dir Mag Ampl bar
0 –84.4° 0.05
1 –61.9° 0.24
2 –39.4° 0.39
3 –16.9° 0.48
4 5.6° 0.50
5 28.1° 0.44
6 50.6° 0.32
7 73.1° 0.15

Figure 8.34 Examples of encoding the raised cosine probability density function in a three-qubit quantum state 
with varying µ values
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NOTE We can use powers of cosine functions to approximate the (standard)
normal distribution if we consider that for any real number x, we have

.

As shown in figure 8.35, the resulting state will have the probability distribution

for 0 ≤ k < N.
 Let’s look at an example using a quantum state with three qubits. First we encode

the starting frequencies into the amplitudes corresponding to outcomes 0, 4, and 7, as
shown in the first state table in figure 8.35. The three-qubit state before and after
applying the circuit that encodes the coefficients is shown in figure 8.36. The last gate
on the circuit diagram represents a controlled X gate. Notice that the resulting ampli-
tudes are real.

Next we apply the QFT to the qubits in reverse order and without swaps, as shown
in figure 8.37. The probabilities of the resulting state have the desired probability
distribution.

Outcome Amplitude Probability

Outcome Amplitude Probability

Figure 8.35 The general state tables for encoding three starting frequencies in a quantum state followed by the QFT

Out Dir Mag Ampl bar
0 0.0° 1
1 0
2 0
3 0
4 0
5 0
6 0
7 0

Out Dir Mag Ampl bar
0 0.0° 0.82
1 0.00
2 0.00
3 0.00
4 180.0° 0.41
5 0.00
6 0.00
7 180.0° 0.41

Figure 8.36 Encoding three starting frequencies in the amplitudes of a three-qubit quantum state
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an 
 - 
For a given number of qubits (n), the function sin_4 creates the circuit for encoding
the desired probability distribution.

from math import acos

def sin_4(n):
    theta = acos(sqrt(2 / 3))
    q = QuantumRegister(n)
    qc = QuantumCircuit(q)

    qc.ry(2 * theta, q[n - 1])
    qc.p(pi, q[n - 1])
    qc.cry(pi / 2, q[n - 1], q[0])

    for i in range(1, n - 1):
        qc.cx(q[0], q[i])

    qc.report('frequencies')

    qc.append_qft(q, reversed=True, swap=False)

    qc.report('qft')

    return qc

Let’s create the same three-qubit state as shown in figure 8.37 with this function:

n = 3
N = 2 ** n
qc = sin_4(n)
state = qc.run()

We can check that the probabilities of the resulting state reflect the encoded probabil-
ity distribution using the following code:

s = [sqrt(8 / (3 * N)) * (sin(k * pi / N)) ** 2 for k in range(N)]
assert all_close(state, s)
p = [8 / 3 / N * (sin(k * pi / N)) ** 4 for k in range(N)]  
assert all_close([abs(state[k])**2 for k in range(N)], p)

Listing 8.6 Creating the circuit for encoding the sin4 probability distribution

Out Dir Mag Ampl bar
0 0.0° 0.82
1 0.00
2 0.00
3 0.00
4 180.0° 0.41
5 0.00
6 0.00
7 180.0° 0.41

Out Dir Mag Ampl bar
0 0.00
1 0.0° 0.08
2 –0.0° 0.29
3 –0.0° 0.49
4 –0.0° 0.58
5 –0.0° 0.49
6 0.0° 0.29
7 0.0° 0.08

Figure 8.37 Applying the QFT to the qubits in a three-qubit quantum state in reverse order (without swaps)

Alternatively, we c
use `8/3/N*(cos((k
N/2)*pi/N))**4`.
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Exercise 8.5
Let’s look at an example of a quantum circuit that uses the QFT. We will initialize a
three-qubit state and apply an RY(–π/2) gate to the first qubit:

n = 3
theta = -pi/2
q = QuantumRegister(n)
qc = QuantumCircuit(q)
qc.ry(theta, q[0])
qc.report('state')

The resulting state can be expressed with the following list comprehension:

N = 8
s = [cos(k*pi/2 - theta/2) if k in [0, 1] else 0 for k in range(N)]
assert all_close(qc.reports['state'][2], s)

Now let’s perform the QFT on all the qubits in the system:

qc.qft(q)
qc.report('qft')

Find a list comprehension expression of the state after applying the QFT (like the pre-
vious one) that will satisfy the following assert statement:

assert all_close(qc.reports['qft'][2], s)

Exercise 8.6
Verify that for a given integer n, the following circuit encodes a quantum state (shown
in the figure) with the following properties:

 The probability of the 0 outcome is 1/2.

 The probability of an odd outcome 0 < k < 2n is .

 The probability of the other outcomes, which are all even, is 0:

def one_over_sine(n):
    q = QuantumRegister(n)
    qc = QuantumCircuit(q)

    for i in range(1, n):
        qc.h(i)

    qc.x(0)
    qc.append_iqft(q, reversed=True, swap=False)

    return qc
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Summary
 The discrete sinc function comes from the sinc function, which is very import-

ant in the field of digital signal processing. For example, the sinc function dis-
tribution is seen in single-slit experiments.

 The discrete sinc function also appears in quantum computing: specifically,
when the IQFT is applied to a geometric sequence state. The magnitudes of the
amplitudes of the resulting state match the discrete sinc function. We call a
state with this pattern a phased discrete sinc state.

 We can use a phased discrete sinc state to estimate an encoded frequency value,
v. If v is an integer, the magnitude of the amplitude corresponding to that inte-
ger will be 1, and the rest will be 0. If v is a non-integer, the outcomes corre-
sponding to the two closest integers will have the two largest magnitudes.

 The QFT can be used to efficiently encode certain probability distributions in
quantum states. Efficient encoding of probability distributions through QFT
operations provides a foundation for quantum algorithms in optimization,
machine learning, and statistical applications.

 To encode a trigonometric function like the raised cosine or sin4 in a quantum
state, we encode well-chosen starting frequencies derived from the Fourier coef-
ficients of the function into the phase of the quantum state and then apply the
QFT. Trigonometric distributions can be used as close approximations of the
normal distribution, which is especially difficult to encode in a quantum state. 



Quantum
phase estimation
Now that we have learned about the QFT, we can implement one of the most useful
quantum algorithms: quantum phase estimation (QPE). QPE is sometimes called
the “Swiss army knife” of quantum computing. Many quantum algorithms use it as
a building block. In particular, QPE plays an important role in Shor’s algorithm, a
quantum computing algorithm that provides an exponential speedup over known
classical algorithms for factoring integers, threatening to break the most common
encryption methods used today, which involve factors of very large numbers.

 Figure 9.1 shows the concepts introduced in this chapter. First we will review
periodic quantum states and how to estimate the frequency of a period quantum
state with measurement. Then we will learn about QPE. Finally, we will introduce

This chapter covers
 Estimating the frequency of a periodic quantum 

state

 Eigenstates and eigenvalues

 Estimating the angle of rotation of a quantum 
circuit

 Quantum amplitude estimation and applications 
(quantum counting)
218
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another essential algorithm, quantum amplitude estimation, and look at example appli-
cations, specifically quantum counting.

9.1 Estimating the frequency of a periodic quantum state
In chapter 8, we looked at how to encode a value as a frequency of a periodic quan-
tum state. First we prepared a geometric sequence state, where the encoded fre-
quency value is reflected in the difference between the phases of the amplitudes of
the state. Then we applied the inverse quantum Fourier transform (IQFT) to the geo-
metric sequence state, which converts the difference in phases to differences in mag-
nitudes (phase-to-magnitude conversion). Figure 9.2 shows the circuit diagram for
encoding a frequency value in a quantum state. 

The following creates the circuit to encode a value (frequency) v in a quantum state
with n qubits.

 
 

Periodic quantum states

Quantum phase estimation

Quantum Fourier transform Quantum measurement

Amplitude estimation Quantum counting

Figure 9.1 A dependency diagram of concepts covered in this chapter

Figure 9.2 The circuit for encoding a 
frequency value v in a quantum state 
with n qubits, where θ = v 2π/2n
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from sim_circuit import QuantumRegister, QuantumCircuit
from math import pi

def encode_frequency(n, v):
    q = QuantumRegister(n)
    qc = QuantumCircuit(q)

    for j in range(n):
        qc.h(q[j])

    for j in range(n):
        qc.p(2 * pi / 2 ** (n - j) * v, q[j])  

    qc.report('geometric_sequence')  

    qc.append_iqft(q)

    qc.report('iqft')

    return qc

Recall that we call the state created by this function a phased discrete sinc state. In chap-
ter 8, we covered several useful forms to express the amplitudes of such a state. We
capture one of these forms in a utility function called phased_sincd, which will be
used in many examples. 

from util import cis, prod

def phased_sincd(n, v):
    N = 2 ** n
    return [prod(
        cos((v - k) * pi / 2 ** (j + 1)) * cis((v - k) * pi / 2 ** (j + 1))
        for j in range(n)) for k in range(2 ** n)]

Let’s consider two examples. We will create two circuits with n = 3 qubits and frequen-
cies v = 3 and v = 3.8 using the following function calls:

n = 3

qc1 = encode_frequency(n, 3)

qc2 = encode_frequency(n, 3.8)

Recall that when we run a circuit on a quantum computer, the only information we
can extract from the quantum state is a measurement outcome. We can run the circuit
several times to create a distribution of outcomes that reflects the probabilities of the
encoded state.

Listing 9.1 Creating the circuit that encodes a frequency in a quantum state

Listing 9.2 Generating a phased discrete sinc state

The phase gate angle is 2j θ. We use the equivalent 
angle 2j θ = v 2π/2n–j.

This report will show 
us the geometric 
sequence state.
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 Next, let’s simulate measurements of each of these circuits. To simulate measure-
ment counts, we will use the measure method of the QuantumCircuit class, where the
shots parameter is the number of measurements to simulate. Each run, or shot,
results in one measurement outcome. We can simulate the repeated execution of a
circuit, followed by measurement, by adjusting the shots parameter. 

 Let’s simulate 10 runs of this circuit:

result = qc1.measure(shots = 10)

If we print the results, we see that all the measurement outcomes were 3:

print(result['counts'])

{3: 10}

We can plot the frequency of outcomes (the number of times each outcome occurred
divided by the total) as a bar graph, as shown in figure 9.3. As we saw in chapter 6,
when the encoded value is an integer in the resulting state, the outcome correspond-
ing to the encoded value will have an amplitude of 1, and the rest of the amplitudes
will be zero. Therefore, all the measurement results are 011 (decimal value 3).

NOTE The measure method uses the random Python package to simulate
measurement, so each time we run the previous code snippet, we get slightly
different counts!

Next, let’s simulate 10 runs of the second example circuit (v = 3.8):

result = qc2.measure(shots = 10)

Figure 9.4 illustrates the resulting measurement counts with a bar chart. Note that
each time we run the code snippet, we typically get a different outcome based on the
underlying probability distribution.

Figure 9.3 Measurement outcome 
frequencies from 10 shots of a phased 
discrete sinc state with n = 3 qubits 
and the encoded frequency value v = 3
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The simplest way to get an estimation of the frequency value is to approximate it with
the most frequent measurement outcome. In the first example, shown in figure 9.3,
the most frequent outcome (and the only outcome) is 011 (3 in decimal form). We
know that the encoded value is 3, so this estimation method gives us an exact result. In
the second example, shown in figure 9.4, the most frequent outcome is 100 (4 in dec-
imal form). Using this method, we approximate the encoded value 3.8 by the integer
estimate 4.

NOTE When the encoded value is not an integer, it can be proven that with
one measurement, we will get the closest integer with a probability of at least
4/π2 ≈ 40%. It can also be proven that there is a probability of at least 8/π2 ≈
81% that we will get one of the two closest integers.

An estimate for the frequency value v also gives an estimate for the angle parameter θ,
given the relationship between the two parameters: θ/(2π) = v/2n. In essence, the
goal of the QPE algorithm is to estimate an unknown rotation angle for an operator.
We can do that by estimating the frequency of a periodic state created with the given
circuit through repeated measurement.

9.1.1 Getting better angle estimates with more qubits

For the remainder of the chapter, we will look at estimating (rotation) angles through
corresponding frequencies. When we create a periodic state for a given angle θ, we
have a choice of how many qubits to use. As we will see, the more qubits we use, the
better the precision for estimating the angle will be. 

 We can think of the possible outcomes as tick markers on a ruler. If the frequency
value is an integer, the probability of one of the ticks will be 1, and the rest will be 0. If
we have n = 3 qubits, we can imagine that we have a ruler with eight ticks, like the one
in figure 9.5. Using more qubits adds more ticks (possible outcomes) to our ruler, as
shown in figure 9.6. If the frequency value v is not an integer, its true value is in
between the ticks.

Figure 9.4 Measurement outcome 
frequencies from 10 shots of a phased 
discrete sinc state with n = 3 qubits and 
the encoded frequency value v = 3.8
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NOTE If v is a real value that is not in the interval 0 ≤ v < 2n, the estimate we
get will be v mod 2n. This is because values of v that differ by 2n correspond to
the same angle when creating the geometric sequence state. For example, if
n = 3, for the value v = 3.8 the angle parameter is θ = 3.8π/4, and for the
value v = 11.8 the angle parameter is θ = 11.8π/4, which is equivalent to
3.8π/4 (the two angles differ by 2π, the length of a full unit circle). We can
think of this as wrapping the ruler.

Remember that the relationship between the frequency and angle parameters is
θ/(2π) = v/2n. When the number of qubits needs to be explicit, we will use the nota-
tion vn. When we use more qubits for the same angle parameter θ, the encoded value
is multiplied by a power of 2: vn = 2n–mvm for n > m.

 Let’s use the angle parameter θ = 3.74. If we encode the corresponding frequency
with three qubits, the true value of the frequency encoded is v3 = θ 23/(2π) = 4.76. If
we use five qubits, the encoded frequency value is v5 = θ 25/(2π) = 19.05. The esti-
mates for v3 and v5 both give us approximations for θ.

 First let’s create a circuit with n = 3 and v3 = 4.76:

qc = encode_frequency(3, 4.76)

Figure 9.7 shows a histogram visualization of the measurement outcome probabilities
of the resulting state. We can see that outcome 5 has the highest probability, followed
by outcome 4, and the rest are more or less improbable.

 

0 51 2 3 4 6 7

Figure 9.5 Using n = 3 qubits is 
like using a ruler with eight ticks.

0 2 4 6 8 10 12 14

0 4 8 12 16 20 24 28

Figure 9.6 Using one more qubit (n = 4) doubles the number of ticks on the ruler. Using n = 5 
qubits doubles the number of ticks again.
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The two most likely outcomes are 4 and 5. Let’s simulate 100 shots of this circuit:

result = qc.measure(shots = 100)
print(result['counts'])

The printed counts are

{5: 79, 4: 12, 6: 3, 7: 3, 3: 2, 2: 1}

As expected, the most frequent outcome is 5. The corresponding estimate of the
parameter θ is 5 (2π)/23 = 3.93.

NOTE We can obtain estimates with better precision if we use more measure-
ments. The number of necessary measurements for a desired precision can be
calculated using exact formulas, which we will not cover in this book.

Next, let’s create a circuit with n = 5 and v5 = 19.05:

qc = encode_frequency(5, 19.05)

A histogram of the measurement outcome probabilities is shown in figure 9.8.
 Let’s simulate 100 runs of this circuit:

result = qc.measure(shots = 100)
print(result['counts'])

The printed counts are

{19: 98, 22: 1, 20: 1}

The most frequent outcome is 19, so the corresponding estimate for θ is 3.73 (θ = 19
2π/25). This is a pretty good estimate for the encoded angle parameter θ = 3.74. 

v = 4.76

Figure 9.7 The measurement 
outcome probabilities for a phased 
discrete sinc state with n = 3 qubits 
and the encoded frequency value 
v = 4.76
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9.1.2 Reading between the ticks: Getting better estimates 
with interpolation

Approximating an encoded frequency with the most likely outcome is like using the
closest tick mark on a measuring tape in real-life tasks. If we want more precise measure-
ments, we can use a measuring tape with finer-grained tick marks. In reality, before get-
ting a new tape, we often approximate the fraction that falls between the two ticks that
are closest to the real value being measured. Intuitively, we assign weights to the two
enclosing ticks that are proportional to how close they are to the measured value. This
process is called linear interpolation, and the human mind is adept at this type of linear
approximation. 

 It is possible to perform a similar process of estimation in the context of frequency
encoding. Let’s denote by pa and pb the probabilities of the outcomes that fall above
and below the true value v of a frequency that is not an integer. The values of the
probabilities can be calculated using any of the expressions for the phased discrete
sinc state.

 The equivalent of what we do in real life with a measuring tape is to approximate
the decimal part of the frequency with

A plot of the results of this approximation against the real decimal value for numbers
between two integers is shown in figure 9.9. We can see that this approximation
method can add more precision to the standard estimation with integers, even though
it approximates a line by a wave.

v = 19.05

Figure 9.8 The measurement 
outcome probabilities for a 
phased discrete sinc state with 
n = 5 qubits and the encoded 
frequency value v = 19.05
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Can we do better than that if we use magnitudes (square roots of probabilities) instead
of probabilities in the interpolation? To use approximations of the magnitudes instead
of probabilities, we use the formula

This formula gives a very good approximation for the decimal part of the real value of
a frequency, as shown in figure 9.10.

Real decimal

Encoded frequency value
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Figure 9.9 Real decimal value 
versus the approximation from 
the ratio of frequencies of the 
two closest integers
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Figure 9.10 Real decimal value 
versus the approximation from the 
ratio of the approximate magnitudes 
of the two closest integers
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Let’s apply this method by revisiting the circuit for n = 3 and v3 = 4.76, where the sim-
ulated measurement results were

{5: 79, 4: 12, 6: 3, 7: 3, 3: 2, 2: 1}

In the pseudo-random samples, the two most frequent outcomes were 4 and 5. So, we
estimate the integer part of the encoded value with 4. We can compute our estimate of
the decimal part of the encoded value with the following Python code:

from math import sqrt

p_4 = result['counts'][4]/sum(result['counts'].values())   
p_5 = result['counts'][5]/sum(result['counts'].values())   

decimal_estimate = sqrt(p_5)/(sqrt(p_4)+ sqrt(p_5))

In this example, we get 0.7195580800495327. If we round to two decimal points and
add the integer part of the estimate, we get v ≈ 4.72. Our goal is to get an estimate for
the true value of θ = 3.74. Using this method, we find an estimate of θ = v 2π/23 ≈ 3.71.
With the same measurement information, this method gives us a much better esti-
mate than 3.93, which we got using the closest integer approximation for the associ-
ated frequency.

 

Exact formula for estimating the decimal part of the frequency
For N outcomes, the exact formula for the decimal part of a frequency is

The simpler approximation we used

is derived from this exact formula. The approximation becomes more precise as N
increases.

In practice, other techniques, like the maximum likelihood estimation (MLE), can also
be used to approximate the decimal part of a frequency. The appeal of our approxi-
mation is that it uses only the two most likely outcomes. This is possible because of
the special properties of phased discrete sinc states. 

Finds the proportion 
of outcomes with 
the value 4

Finds the proportion 
of outcomes with 
the value 5
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Next we will apply frequency estimation to the scenario in which a circuit acts as a
rotation on a quantum register. 

9.2 Quantum circuits as rotations with eigenstates 
and eigenvalues
It is very common in the sciences to learn something about a system from its effects on
other systems or the environment. Attributes that are invisible or hidden become
measurable. The QPE algorithm falls into this category. Given a quantum circuit that
acts as a rotation on a quantum register, we can use it to create a periodic quantum
state in a second register whose frequency reflects the unknown rotation angle for the
circuit. Then we can estimate the frequency of the periodic state and, subsequently,
the rotation angle. 

 To understand the details of the QPE algorithm, we need to first discuss the con-
cepts of eigenvectors and eigenvalues in the context of quantum transformations repre-
sented by quantum circuits. A quantum state vector is called an eigenvector (or
eigenstate) of a circuit transformation U if all its amplitudes are multiplied by a corre-
sponding eigenvalue (a complex number that must have a magnitude of 1) as a result
of the circuit application. This is the same as rotating all amplitudes in the state by the
phase of the eigenvalue. 

 Figure 9.11 shows the algebraic form of the effect of a quantum circuit, denoted by
U, when applied to one of its eigenstates: all amplitudes are multiplied by the corre-
sponding eigenvalue, cis(θ). Note that a circuit can have multiple eigenstates.

Let’s look at the single-qubit circuit in figure 9.12, which consists of one RY gate with
an angle parameter of 2θ. The function ry_circuit takes an angle parameter theta
and creates this circuit:

def ry_circuit(theta):
    q = QuantumRegister(1)
    qc = QuantumCircuit(q)
    qc.ry(2*theta, q[0])

    return qc

Exercise 9.1
Using the angle parameter θ = 12.85 and n = 4 qubits, use both methods (integer
and ratio of magnitudes) to get an estimate for θ using 100 shots.

Outcome Amplitude Outcome Amplitude
Figure 9.11 The effect 
of a quantum circuit U 
when applied to one of 
its eigenstates
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It turns out that the state  is an eigenstate for the RY gate for any value of the

angle parameter. Let’s verify that applying RY(2θ) to this state rotates both its ampli-
tudes by θ, meaning the eigenvalue for this eigenstate is cis(θ).

 First we need a circuit that prepares the single-qubit state . The circuit

returned by the function ry_eigen_circuit does just that:

def ry_eigen_circuit():
    q = QuantumRegister(1)
    qc = QuantumCircuit(q)

    qc.x(q[0])
    qc.rx(-pi/2, q[0])

    return qc

The state table for a single-qubit state after applying this circuit is shown in figure 9.13.

We can check that the state prepared by the circuit matches  using the follow-

ing code:

from util import all_close

qc = ry_eigen_circuit()
state = qc.run()

assert all_close(state, [1j/sqrt(2), 1/sqrt(2)])

Now let’s apply the RY(π/3) gate to the eigenstate:

q = QuantumRegister(1)
qc = QuantumCircuit(q)

qc.x(q[0])
qc.rx(-pi/2, q[0])

Figure 9.12 A single-qubit circuit 
transformation U = RY(2θ )

Out Bin Ampl Dir Ampl bar
0 0 1 0.0°
1 1 0

Out Bin Ampl Dir Ampl bar
0 0 0.00 + 0.71i 90.0°
1 1 0.71 0.0°

Figure 9.13 A single-qubit state in its default state and after applying the circuit RX(–π/2)X



230 CHAPTER 9 Quantum phase estimation
theta = pi/6

qc.ry(2*theta, q[0])

state = qc.run()

The resulting state table after applying this circuit is shown in figure 9.14.

We can visualize the effect of the circuit on the state  using the color wheel

visualization in figure 9.15. The lengths (magnitudes) of the amplitudes do not change,
but both amplitudes are rotated by the same angle, and they stay perpendicular.

We can apply the circuit to the eigenstate multiple times, and the magnitudes of the
amplitudes will not change, but the amplitudes will be rotated by the same angle
every time:

q = QuantumRegister(1)
qc = QuantumCircuit(q)

qc.x(q[0])
qc.rx(-pi/2, q[0])

theta = pi/6

qc.ry(2*theta, q[0])   
qc.ry(2*theta, q[0])   

state = qc.run()

The resulting state table is shown in figure 9.16.
 In this example, the state created by the circuit created by ry_eigen_circuit is an

eigenstate of the circuit (transformation) in figure 9.12, and the complex number
cis(θ) is the corresponding eigenvalue. The eigenvalue is the complex number whose

Out Bin Ampl Dir Ampl bar

0 0 0.00 + 0.71i 90.0°

1 1 0.71 0.0°

Out Bin Ampl Dir Ampl bar

0 0 –0.35 + 0.61i 120.0°

1 1 0.61 + 0.35i 30.0°

Figure 9.14 The state tables before and after applying the circuit RY(π/3)

0

1

0
1

Figure 9.15 The color wheel visualization of the 
amplitudes of a single-qubit state before and 
after the circuit RY(π/3) is applied

Applies the circuit twice
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direction is the angle the amplitudes are rotated by when the second circuit is applied:
in this example, π/3. 

Eigenstates and eigenvalues with Ket notation
If we have a complex number λ and a nonzero vector |ψ  that satisfies the equation

then we say that λ is an eigenvalue of the eigenvector |ψ .

Exercise 9.2
We can describe the eigenstate in this example as

The operator is a RY gate with angle parameter 2θ. The two-by-two matrix form of an
RY gate is 

We can express the application of the operator to the eigenstate as

Show that the complex number cis(θ ) is the eigenvalue of the eigenstate |ψ .

Exercise 9.3
Let’s look at the phase gate in the context of eigenstates and eigenvalues. The cir-
cuit will be

Outcome Binary Amplitude Direction Magnitude Amplitude bar Probability

0 0 –0.61 + 0.35i 150.0° 0.71 0.50

1 1 0.35 + 0.61i 60.0° 0.71 0.50

Figure 9.16 The state table after applying the circuit RY(π/3) twice
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9.3 The quantum phase estimation algorithm
We will use the fact that a quantum circuit rotates all the amplitudes of one of its
eigenstates by the phase of the corresponding eigenvalue to build a periodic quantum
state. To do this, we will use a pattern similar to the geometric sequence encoding pat-
tern. Given an m-qubit circuit U, where m > 1, we will implement the following steps:

0 Start with an n-qubit register, called the estimation register, which will be mea-
sured to obtain the desired phase estimate, and an m-qubit register, called the
target register, which will be used to encode an eigenstate of the circuit U. 

1 Prepare an eigenstate of the circuit U in the m-qubit target register. Let’s denote
the rotation angle by θ, corresponding to the eigenvalue cis(θ).

2 Apply a Hadamard gate to each qubit in the n-qubit estimation register.
3 For each integer 0 ≤ k < n, apply (each gate in) the circuit U to the target regis-

ter, controlled on the qubit k of the estimation register, 2k times.
4 (Optional) Apply the inverse of the circuit that prepared the eigenstate of U to

the target register.
5 Apply the IQFT to the estimation register.
6 Estimate the frequency value v = θ 2n/(2π) as the most frequent measurement

of the estimation register or using any other method we have discussed. This
will give an estimate of θ.

These steps are captured in the circuit diagram in figure 9.17. It is a relatively complex
circuit, but we will look at a step-by-step example to make it easier to understand.

 Let’s look at a visual representation of the process for the single-qubit (m = 1) cir-
cuit U = RY(2θ), where θ = 4.7 (2π)/2n for n = 3. The eigenvalue of U is cis(θ). Our
goal is to get an estimate for θ using the measurement outcome of the estimation
register.

 Our step 0 is to create two registers: one with m qubits that will be used to encode
the eigenstate (the target register) and one with n qubits that we will use to obtain the

(continued)

An eigenstate of the circuit can be created by applying an X gate to a single qubit in
its initial state. The following Python code creates this state:

q = QuantumRegister(1)
qc = QuantumCircuit(q)
qc.x(q[0])

state = qc.run()

Apply the circuit to the state created previously using various values for θ. Check that
each time the circuit is applied, the amplitudes of the state are multiplied by cis(θ ). 
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estimate (the estimation register). In this example, we only need one qubit for our tar-
get register, and we will use n = 3 qubits for our estimation register:

n = 3
q = QuantumRegister(n)
a = QuantumRegister(1)
qc = QuantumCircuit(q, a)

Step 1 is to prepare an eigenstate of the circuit U in the target register:

qc.x(a[0])
qc.rx(-pi/2, a[0])

If we were to run this part of the circuit, the state tables before and after are shown in
figure 9.18.

 Next we apply Hadamard gates to each of the qubits in the estimation register.
Then, for each qubit k in the estimation register, we apply the circuit U to the target
register 2k times, controlled on qubit k. To perform this step (step 2), we can write two
for loops. The first applies a Hadamard gate to each qubit, and the second is a nested

Step 1: Prepare
eigenstate

Step 2: Apply Hadamard gates
to estimation register

Step 3: Controlled U (Optional)
Step 4

Step 5: IQFT

n-qubit
estimation

register

m-qubit
target

register

Figure 9.17 The QPE algorithm where U is an m-qubit circuit and E prepares an eigenstate of the circuit
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for loop that applies the circuit U (with rotation angle 2θ) to the target register k
times for each control qubit k:

for i in range(n):
    qc.h(q[i])

theta = 4.7*2*pi/2**n

for i in range(n):
    for _ in range(2**i):
        qc.cry(2*theta, q[i], a[0])   

This step is illustrated in figure 9.19. The resulting state is a superposition of geomet-
ric sequence states that reflect the angle θ. If we perform the (optional) step to reverse

Out Dir Mag Ampl bar

0 0.0° 1

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

10 0

11 0

12 0

13 0

14 0

15 0

Out Dir Mag Ampl bar

0 90.0° 0.71

1 0.00

2 0.00

3 0.00

4 0.00

5 0.00

6 0.00

7 0.00

8 0.0° 0.71

9 0.00

10 0.00

11 0.00

12 0.00

13 0.00

14 0.00

15 0.00

Figure 9.18 The initial state table and the state table after applying the circuit RX(–π/2)X to the target 
register

The total rotation 
angle is 2iθ .

Out Dir Ampl bar
0 90.0°
1
2
3
4
5
6
7
8 0.0°
9

10
11
12
13
14
15

Out Dir Ampl bar
0 90.0°
1 –58.5°
2 153.0°
3 4.5°
4 –144.0°
5 67.5°
6 –81.0°
7 130.5°
8 0.0°
9 –148.5°

10 63.0°
11 –85.5°
12 126.0°
13 –22.5°
14 –171.0°
15 40.5°

Figure 9.19 The state table where an eigenstate is prepared in the target register, the circuit that applies 
Hadamard gates to each qubit in the estimation register, followed by controlled applications of the circuit RY(2θ )
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the eigenstate preparation in the target register, we will get a single geometric sequence
state in the estimation register.

 Remember from chapter 3 that the inverse of an RX(θ) rotation is RX(–θ) and that
the X gate is its own inverse. We can apply the inverse of the circuit that prepares the
eigenstate with the following code:

qc.rx(pi/2, a[0])
qc.x(a[0])

This step is illustrated in figure 9.20. We can see a single geometric sequence state in
the estimation register.

Finally, we apply an IQFT to the estimation register. We can do this with the following
code:

qc.append_iqft(q)

If step 4 was not performed, we get a superposition of phased discrete sinc states, as
shown in figure 9.21. If step 4 was performed, we get a single-phased discrete sinc state
in the estimation register, as shown in figure 9.22.

 If we perform repeated measurements of the resulting state(s) in figure 9.21 or
9.22, we can perform the last step: estimating the frequency value and the corresponding

Out Dir Mag Ampl bar

0 90.0° 0.25

1 –58.5° 0.25

2 153.0° 0.25

3 4.5° 0.25

4 –144.0° 0.25

5 67.5° 0.25

6 –81.0° 0.25

7 130.5° 0.25

8 0.0° 0.25

9 –148.5° 0.25

10 63.0° 0.25

11 –85.5° 0.25

12 126.0° 0.25

13 –22.5° 0.25

14 –171.0° 0.25

15 40.5° 0.25

Out Dir Mag Ampl bar

0 0.0° 0.35

1 –148.5° 0.35

2 63.0° 0.35

3 –85.5° 0.35

4 126.0° 0.35

5 –22.5° 0.35

6 –171.0° 0.35

7 40.5° 0.35

8 0.00

9 0.00

10 0.00

11 0.00

12 0.00

13 0.00

14 0.00

15 0.00

Figure 9.20 The state table of geometric sequence states in superposition, the inverse of the circuit 
that prepared the eigenstate, and the resulting geometric sequence state in the estimation register
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angle of the eigenvalue. We can check that the estimation register in figure 9.22 is the
phased discrete sinc state we expect with the following Python code:

from util import all_close
from math import cos

state = qc.run()

n = 3
theta = 4.7*2*pi/2**n
s = phased_sincd(n, theta/(2*pi)*2**n)
assert all_close(state[:2**n], s)

Out Dir Mag Ampl bar
0 90.0° 0.25
1 –58.5° 0.25
2 153.0° 0.25
3 4.5° 0.25
4 –144.0° 0.25
5 67.5° 0.25
6 –81.0° 0.25
7 130.5° 0.25
8 0.0° 0.25
9 –148.5° 0.25
10 63.0° 0.25
11 –85.5° 0.25
12 126.0° 0.25
13 –22.5° 0.25
14 –171.0° 0.25
15 40.5° 0.25

Out Dir Mag Ampl bar
0 110.2° 0.07
1 132.7° 0.07
2 155.2° 0.08
3 177.8° 0.12
4 –159.8° 0.26
5 42.7° 0.61
6 65.2° 0.15
7 87.7° 0.09
8 20.2° 0.07
9 42.7° 0.07
10 65.2° 0.08
11 87.7° 0.12
12 110.3° 0.26
13 –47.3° 0.61
14 –24.8° 0.15
15 –2.2° 0.09

Figure 9.21 The state table of geometric sequence states in superposition, the IQFT applied to the estimation 
register, and the state table of the superposition of phased discrete sinc states

Out Dir Mag Ampl bar
0 0.0° 0.35
1 –148.5° 0.35
2 63.0° 0.35
3 –85.5° 0.35
4 126.0° 0.35
5 –22.5° 0.35
6 –171.0° 0.35
7 40.5° 0.35
8 0.00
9 0.00

10 0.00
11 0.00
12 0.00
13 0.00
14 0.00
15 0.00

Out Dir Mag Ampl bar
0 20.2° 0.11
1 42.8° 0.10
2 65.2° 0.12
3 87.7° 0.16
4 110.2° 0.37
5 –47.3° 0.86
6 –24.8° 0.21
7 –2.2° 0.13
8 0.00
9 0.00
10 0.00
11 0.00
12 0.00
13 0.00
14 0.00
15 0.00

Figure 9.22 The state table of geometric state in the estimation register, the IQFT applied to the estimation 
register, and the state table of the resulting phased discrete sinc state
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Next we will add some additional methods to our quantum circuit simulator so that we
can easily build the phase estimation circuit. 

9.4 Circuit-level implementation of the quantum phase 
estimation algorithm
To perform the phase estimation algorithm, we need to build the phase estimation
circuit shown in figure 9.23. We can use the phase_estimation_circuit function to
do so, where n is the number of qubits in the estimation register, circuit is the circuit
whose rotation angle we want to find, and the optional parameter eigen_circuit pre-
pares an eigenvector of the circuit. 

def phase_estimation_circuit(n, circuit, eigen_circuit=None):
    q = QuantumRegister(n)
    a = QuantumRegister(sum(circuit.regs))     
    qc = QuantumCircuit(q, a)     

Exercise 9.4
Use the state created in figure 9.22 to get an estimate for the true angle parameter θ.

Listing 9.3 Function for creating the phase estimation circuit

n-qubit
estimation

register

m-qubit
target

register

Figure 9.23 The phase estimation algorithm where U is an m-qubit circuit and E prepares an 
eigenstate of the circuit

Step 0: the size of the 
target register is the same 
as the number of qubits in 
the circuit parameter.The target register is last.
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    if eigen_circuit is not None:     
        qc.append(eigen_circuit, a)
        qc.report('eigenstate')

    for i in range(n):      
        qc.h(q[i])

    for i in range(n):            
        for _ in range(2**i):
            qc.c_append(circuit, q[i], a)

    qc.report('geometric_sequence_superposition')

    if eigen_circuit is not None:                
        qc.append(eigen_circuit.inverse(), a)
        qc.report('geometric_sequence')

    qc.append_iqft(q)        
    qc.report('estimate')

    return qc

Note that if the eigen_circuit parameter is None, we end up with a superposition of
geometric sequence states. 

 Let’s create the circuit for the previous example:

n = 3
N = 2**n
theta = 4.7*2*pi/N

qc = phase_estimation_circuit(n, ry_circuit(2*theta), ry_eigen_circuit())

We can check that this circuit matches the step-by-step results we got in the previous
section using the following code:

eig = qc.reports['eigenstate'][2]
assert all_close(eig, [1j/sqrt(2) if k == 0 else 0 for k in range(N)] +
    [1/sqrt(2) if k == 0 else 0 for k in range(N)])

geom = qc.reports['geometric_sequence'][2]
g = [1/sqrt(N)*cis(k*theta) for k in range(N)]
assert all_close(geom[:N], g)

estimate = qc.reports['estimate'][2]
s = phased_sincd(n, theta/(2*pi)*N)
assert all_close(estimate, s + [0 for _ in range(N)])

9.5 An alternative implementation of the phase estimation 
circuit without qubit swaps
We can create a phase estimation circuit that does not require the qubit swaps in the
IQFT and therefore is more efficient. In the alternative implementation, the controlled

Step 1: If a circuit that prepares an 
eigenstate is passed to the function, 
we apply it to the target register.

Step 2

Step 3

Optional step 4

Step 5
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applications of the circuit are applied to the target qubits in reverse order with decreas-
ing multiples of θ. In the previous implementation, the circuit was applied to each tar-
get qubit 0 ≤ k < n in the n-qubit estimation register 2k times. This means the total
rotation angle applied to target qubit k was 2kθ. In the alternative version, the circuit is
applied 2n–1–k times to each target qubit k, so the total rotation angle applied to target
qubit k is 2n–1–kθ. This reorders the amplitudes of the periodic quantum state. 

NOTE The amplitudes of the periodic quantum state created using the alter-
native implementation correspond to qubits in reversed order. For example,
using an estimation register with n = 3 qubits, the amplitude corresponding to
outcome 001 in the previous implementation would now be the amplitude
corresponding to outcome 100.

If we apply the IQFT to qubits in reversed order and without swapping qubits at the
end, we get the same phased discrete sinc (or superposition of phased discrete sinc
states) as in the previous version. The function in listing 9.4 includes a parameter
swap. If swap = True (the default value), the function returns a circuit using the previ-
ous implementation (with swaps). If swap = False, the function returns a circuit using
the alternative implementation (without swaps). 

def phase_estimation_circuit(n, circuit, eigen_circuit=None, swap=True):
    q = QuantumRegister(n)
    a = QuantumRegister(sum(circuit.regs))
    qc = QuantumCircuit(q, a)

    if eigen_circuit is not None:
        qc.append(eigen_circuit, a)
        qc.report('eigenstate')

    for i in range(n):
        qc.h(q[i])

    for i in range(n):
        if swap:
            for _ in range(2**i):
                qc.c_append(circuit, q[i], a)
        else:
            for _ in range(2**i):
                qc.c_append(circuit, q[n-1-i], a)   

    qc.report('geometric_sequence_superposition')

    if eigen_circuit is not None:
        qc.append(eigen_circuit.inverse(), a)

    qc.report('geometric_sequence')

    qc.append_iqft(q, False if swap else True, swap)   
    qc.report('estimate')

    return qc

Listing 9.4 Alternative implementation for creating the QPE circuit

Reverses the 
target qubit 
order

Applies an IQFT to 
the estimation 
register with qubits 
in reverse order and 
without swaps
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The following Python code creates a circuit for the same problem as in the previous
section using the alternative implementation:

n = 3
N = 2**n
theta = 4.7*2*pi/N
swap = False

qc = phase_estimation_circuit(n, ry_circuit(2*theta), ry_eigen_circuit(), swap)

Let’s look at the geometric sequence state created using this circuit in figure 9.24.
We can check that the amplitudes of the geometric sequence state in figure 9.24
match the geometric sequence state created using the first method with the follow-
ing code:

from util import reverse_index_state

geom = qc.reports['geometric_sequence'][2]
g = [1/sqrt(N)*cis(k*theta) for k in range(N)]
assert all_close(geom[:N], g if swap else reverse_index_state(g))  

Next we apply the IQFT to the qubits in reverse order and without swaps, as shown in
figure 9.25. We end up with the same phased discrete sinc state as the one created
using the first implementation. Let’s check that with the following code:

estimate = qc.reports['estimate'][2]
s = phased_sincd(n, theta/(2*pi)*N)
assert all_close(estimate, s + [0 for _ in range(N)])

The periodic state created has amplitudes
in reversed order. We can use the utility

function reverse_index_state to
reorder the amplitudes.

Out Dir Mag Ampl bar

0 90.0° 0.71
1 0.00
2 0.00
3 0.00
4 0.00
5 0.00
6 0.00
7 0.00
8 0.0° 0.71
9 0.00
10 0.00
11 0.00
12 0.00
13 0.00
14 0.00
15 0.00

Out Dir Mag Ampl bar

0 0.0° 0.35
1 126.0° 0.35
2 63.0° 0.35
3 –171.0° 0.35
4 –148.5° 0.35
5 –22.5° 0.35
6 –85.5° 0.35
7 40.5° 0.35
8 0.00
9 0.00
10 0.00
11 0.00
12 0.00
13 0.00
14 0.00
15 0.00

Figure 9.24 The state table where an eigenstate is prepared in the target register and the state table of the 
geometric sequence state with amplitudes in reversed order (previous amplitudes [0, 1, 2, 3, 4, 5, 6, 7] map to 
amplitudes [0, 4, 2, 6, 1, 5, 3])
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The function test_ry_phase_estimation checks that the amplitudes of the state
match the expected values for 10 pseudo random values of θ :

from random import uniform

def test_ry_phase_estimation():
    n = 3
    N = 2**n

    random_thetas = [uniform(-pi, pi) for _ in range(10)]

    for theta in random_thetas:
        for swap in [True, False]:
            qc = phase_estimation_circuit(n, ry_circuit(theta), 

ry_eigen_circuit(), swap)

            eig = qc.reports['eigenstate'][2]
            assert all_close(eig, [1j/sqrt(2) if k == 0 else 0 for k in 

range(N)] +
                             [1/sqrt(2) if k == 0 else 0 for k in range(N)])

            geom = qc.reports['geometric_sequence'][2]
            g = [1/sqrt(N)*cis(k*theta/2) for k in range(N)]
            assert all_close(geom[:N], g if swap else reverse_index_state(g))

            estimate = qc.reports['estimate'][2]
            s = phased_sincd(n, theta/2/(2*pi)*N)
            assert all_close(estimate[:N], s)

We can use either implementation to create the phase estimation circuit. The result-
ing state is used to estimate the angle of the circuit’s eigenvalue. 

Out Dir Mag Ampl bar
0 0.0° 0.35
1 180.0° 0.21
2 0.0° 0.16
3 180.0° 0.35
4 180.0° 0.30
5 0.0° 0.33
6 0.0° 0.03
7 0.0° 0.27
8 0.00
9 0.0° 0.29
10 0.0° 0.32
11 180.0° 0.06
12 180.0° 0.18
13 180.0° 0.14
14 180.0° 0.35
15 0.0° 0.23

Out Dir Mag Ampl bar
0 0.0° 0.10
1 20.0° 0.11
2 39.1° 0.15
3 53.4° 0.50
4 180.0° 0.13
5 –53.4° 0.50
6 –39.1° 0.15
7 –20.0° 0.11
8 0.0° 0.04
9 40.1° 0.04

10 82.4° 0.07
11 129.0° 0.37
12 0.0° 0.35
13 –129.0° 0.37
14 –82.4° 0.07
15 –40.1° 0.04

Figure 9.25 The state table of the geometric sequence state with qubits in reverse order, the circuit for applying 
the IQFT to the estimation register in reverse order and without qubit swaps, and the resulting state table for the 
phased discrete sinc state
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9.6 Amplitude estimation and quantum counting
At the beginning of this book, we discussed three common quantum computing
patterns:

 Sampling from probability distributions
 Searching for specific outcomes
 Estimating the probability of specific outcomes

In chapters 5 and 6, we learned about essential concepts for solving problems that
require searching for specific outcomes. Now we will look at our third pattern of quan-
tum computing problems: estimating the probability of one or more specific outcomes.

 Estimating the distribution of good and bad outcomes is similar to polling a sample of
a population. For example, if we want to understand what proportion of the population
prefers each of the candidates in an upcoming election, instead of asking every member
of the population, we can use a smaller sample to estimate the real distribution. The sta-
tistics methods used for estimating the real distribution by sampling from it also apply to
estimating the probability of good and bad outcomes of quantum computations.

 It is helpful to use a visual representation of the random samples from a large set
of outcomes, like the one in figure 9.26. Imagine that the large set is represented by
marbles in a bin: the dark marbles correspond to good outcomes, and the light mar-
bles correspond to bad outcomes. For n qubits, the number of outcomes (all marbles
in the bin) is 2n. The number of outcomes can be very large. For example, if we have
n = 42 qubits, the number of outcomes is over a trillion. Instead of using all the out-
comes, we can use a much smaller sample to estimate the real distribution (propor-
tion) of dark and light marbles. It is intuitive that the larger the sample is, the smaller
the margin of error will be.

How many samples do we need to get a good estimate of the real distribution?
According to the Hoeffding Inequality, the probability that the proportion of dark mar-
bles in a sample deviates from the real proportion by a certain amount ε > 0 is less

than , where M is the number of samples. Note that only the sample size,
M, affects this bound, not the total number of marbles. 

It is remarkable that such a bound exists. If more information about the real distribu-
tion is known, the number of samples to achieve the desired margin error can be
reduced. For example, if the probability of choosing a dark marble is close to 1, then
a much smaller number of samples will suffice to estimate it.

Figure 9.26 Representation of random samples 
taken from a large bin of marbles. The dark marbles 
correspond to good outcomes, and the light 
marbles correspond to bad outcomes.
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9.6.1 Amplitude estimation

Given a quantum state, we can estimate the probability of a set of good outcomes by
repeatedly measuring the quantum state. However, this may require a very large num-
ber of measurements. Amplitude estimation is an algorithm that can drastically reduce
the number of measurements needed to obtain a very good estimation for the num-
ber or the probability of the set of good outcomes, but at the expense of adding more
qubits and performing a more complex quantum computation. 

 Given an m-qubit circuit A, where m > 1, and an m-qubit oracle circuit O, we will
implement the following steps:

0 Start with an n-qubit register (the estimation register), which will be measured
to obtain the desired estimate, and an m-qubit register (the target register),
which will be used to apply the circuit A.

1 Apply circuit A to the target register and a Hadamard gate to each qubit in the
n-qubit estimation register.

2 Build the Grover iterate G = MO = AM0 A–1 O. Then, for each integer 0 ≤ k < n,
apply (each gate in) the circuit G to the target register, controlled on the qubit
k of the estimation register, 2k times.

3 Apply the IQFT to the estimation register.
4 Measure the estimation register (we will actually measure both registers and

group the results that have the same estimation register value).

These steps are captured in the circuit diagram in figure 9.27.

n-qubit
estimation

register

m-qubit
target

register

Figure 9.27 The amplitude estimation diagram where A is an m-qubit circuit and G is a Grover operator 
constructed using an m-qubit oracle circuit 
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You may recognize that the structure of the circuit diagram in figure 9.27 is similar to
that of the QPE diagram in figure 9.23.

 To estimate the probability of good outcomes or their count, we repeat the compu-
tation in the algorithm several times and take the most frequent estimation register
value 0 ≤ v < 2n obtained through measurements. Using this result, we can do the fol-
lowing:

 Estimate the probability of good outcomes as

 Estimate the number of good outcomes (assuming all outcomes have equal
probability) as the closest integer to

NOTE As usual, we will not go into mathematical proofs of the results related
to various algorithms, but in essence, the Grover operator G acts as a rotation,
which allows us to use any known methods for estimating the rotation angle
by building a geometric sequence and applying an IQFT. For a given oracle
that tags L good outcomes, the corresponding Grover operator rotates the
initial state by an angle 2θ, with sin2 θ = L/2n, where n > 0 is the number of
qubits. Therefore, an estimate for θ gives us an estimation for L.

The amplitude_estimation_circuit function, defined in listing 9.5, creates the
amplitude estimation circuit where n is the number of qubits in the estimation regis-
ter, the parameter A represents a circuit A, and O is the oracle circuit. We use the
grover_iterate_circuit function from chapter 6 to build the Grover iterate circuit.
The swap parameter has the default value True. We will look at examples where we
can set this parameter to False to create a more efficient circuit. 

from algo import grover_iterate_circuit

def amplitude_estimation_circuit(n, A, O, swap=True):
    c = QuantumRegister(n)
    q = QuantumRegister(sum(A.regs))
    qc = QuantumCircuit(c, q)

    for i in range(n):
        qc.h(c[i])

    qc.append(A, q)

    for i in range(n):
        for _ in range(2**i):

Listing 9.5 Function to create the amplitude estimation circuit
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            if swap:
                qc.c_append(grover_iterate_circuit(A, O), c[i], q)       
            else:
                qc.c_append(grover_iterate_circuit(A, O), c[n-1-i], q)   

    qc.iqft(c if swap else c[::-1], swap)

    return qc

9.6.2 Estimating the number of good outcomes with quantum counting

Let’s look at an example problem where we want to know the number of outcomes
tagged by an oracle. We call this quantum counting. We can use amplitude estimation to
solve this problem. 

 We will use the function in listing 9.5 to create an amplitude estimation circuit.
Let’s start with two registers of qubits: a three-qubit target register and a five-qubit esti-
mation register. We also define an oracle using the phase_oracle_match function
introduced in chapter 5 that tags good outcomes 0, 1, and 2. The initial state in the
target register is an equal superposition state prepared by applying a Hadamard gate
to each qubit in the register. To prepare this state, we will use the uniform function
that we have used in previous chapters. We will choose to avoid qubit swaps in the
inverse quantum Fourier transform (swap = False):

from algo import uniform, phase_oracle_match

n = 5
m = 3
items = [0, 1, 2]

qc = amplitude_estimation_circuit(
    n,
    prepare_uniform(m),
    phase_oracle_match(m, items),
    False
)

Let’s create a histogram to visualize the measurement outcome probabilities of the
estimation register:

Why we can apply QPE to Grover iterates
In amplitude estimation, we want to find the eigenvalues of the Grover operator G
built from a state-preparation operator A and an oracle O. The eigenvalues of G are
all 1 or –1 except two (nontrivial) eigenvalues that are conjugate (phases that are
opposite each other). The nontrivial eigenstates allocate equal total probability to
good and bad outcomes. If 2θ is the phase of one of them, the probability of good
outcomes is sin2 θ. 

We use the method c_append to
apply a circuit to a register with a

control qubit in a different register
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state = qc.run()

probs = [0 for _ in range(2**n)]
for k in range(2**m):
    for j in range(2**n):
        probs[j] += abs(state[k*2**n + j])**2

plot_bars(list_to_dict(probs, False), '', 'Outcomes', 'Probability')

The resulting histogram is shown in figure 9.28. You may notice that the probabilities
are symmetrical with respect to the outcome N/2. We can use only the second half of
the probabilities:

probs_half = [2*probs[k] for k in range(len(probs)//2 + 1, len(probs))]
probs_half = [1 - sum(probs_half)] + probs_half        

plot_bars(list_to_dict(probs_half, False), '', '', '')

The histogram of the probabilities of the second half of the estimation register out-
comes is shown in figure 9.29. As discussed, we can use the results to estimate the
number of good outcomes as the closest integer to

Sets the probability 
of outcome 0 to be 
the remainder

Count = 3

Two-register outcomes

P
ro

b
a
b
ili

ty

Figure 9.28 Measurement outcome probabilities of the estimation register
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where v is the most frequent outcome of the estimation register.

In code, we can set v to be the outcome with the highest probability:

import numpy as np
from math import sin

v = np.argmax(probs[int(len(probs)/2):])
print('v:', v)
count = int(2**m*sin(7*pi/2**n)**2)
print('count:', count)

assert(count == len(items))  

In this example, the printed output is 

v: 7
count: 3

9.6.3 Estimating the probability of good outcomes with amplitude 
estimation

Instead of the number of good outcomes, suppose we want to know the combined
probability of those outcomes. We can use the amplitude estimation algorithm to
approximate the probability of one or more outcomes. 

Count = 3

Single-register outcomes

P
ro

b
a
b
ili

ty

Figure 9.29 Measurement probabilities of the second half of the estimation 
register outcomes

In this example, we know the 
count should be equal to the 
number of good outcomes.
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 The initial state in the target register can be prepared with a quantum circuit
(operator). We will use the random_circuit function to generate random quantum
circuits in the same way we generated random transformations in chapter 6. The com-
plete definition of the function can be found in the chapter code. For example, let’s
use the random_circuit function to create an example operator A for m = 3 qubits:

from util import random_circuit

m = 3
C = random_circuit(m)

The state created with this random circuit is shown in figure 9.30.

Let’s set the good outcomes 0 and 1:

items = [0, 1]

We can find the probability of measuring one of the good outcomes with the following
function:

def good_probs(qc, items):
    state = qc.run()
    return sum([abs(state[k])**2 for k in items])

Let’s find the probability of getting one of the good outcomes from the state in fig-
ure 9.30:

q = QuantumRegister(m)
qc = QuantumCircuit(q)
qc.append(C, q)

prob_g = good_probs(qc, items)

Outcome Binary Amplitude Direction Magnitude Amplitude bar Probability

0 000 –0.32 – 0.05i –171.0° 0.32 0.10

1 001 –0.26 + 0.14i 151.1° 0.30 0.09

2 010 0.67 + 0.25i 20.4° 0.71 0.51

3 011 0.03 – 0.07i –69.0° 0.08 0.01

4 100 –0.28 - 0.18i –147.0° 0.33 0.11

5 101 –0.04 – 0.03i –139.9° 0.05 0.00

6 110 0.14 – 0.03i –13.5° 0.14 0.02

7 111 0.16 + 0.37i 65.7° 0.40 0.16

Figure 9.30 A three-qubit state prepared with a randomly generated circuit
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In this example, prob_g is 0.1897666121194554.
 Using the circuit defined previously as the operator A, let’s apply the amplitude

estimation algorithm with n = 8 target qubits. This time, let’s use the swaps in the
IQFT (swap = True):

n = 8

qc = amplitude_estimation_circuit(n, C, phase_oracle_match(m, items), 
swap=True)

state = qc.run()

Once again, we create a list of the probabilities of estimation register outcomes:

probs = [0 for _ in range(2**n)]
for k in range(2**m):
    for j in range(2**n):
        probs[j] += abs(state[k*2**n + j])**2

We can use the most frequent measurement outcome v to estimate the probability of
good outcomes as

We will define v as the estimation register outcome with the highest probability and
compute our estimate using the following Python code:

v = np.argmax(probs[int(len(probs)/2):])
print('v =', v)
estimate = round(sin(v*pi/2**n)**2, 4)
print('estimate ~', estimate)

assert(abs(prob_g - estimate) < 0.01)

In this example, the printed output is

v = 37
estimate ~ 0.1924

This is a reasonably good estimate of the expected probability of getting one of the
good outcomes. 

Summary
 The quantum phase estimation (QPE) algorithm serves as a fundamental build-

ing block for many quantum algorithms, including Shor’s algorithm.
 If we have measurement results from a phased discrete sinc state with n qubits

and an unknown encoded frequency value v, we can get an estimate for the true
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value of v and the corresponding angle parameter θ = v 2π/2n. In this chapter,
we learned two methods for getting an estimate: using the most frequent inte-
ger outcome and using the relation between the approximate magnitudes of
the two most frequent consecutive integer outcomes.

 A quantum state vector is called an eigenvector (or eigenstate) of a circuit trans-
formation U if all its amplitudes are multiplied by a corresponding eigenvalue
(a complex number of length 1) as a result of the circuit application.

 Given an m-qubit circuit U (where m > 1), we can implement the phase estima-
tion circuit to create a phased discrete sinc state in the estimation register. We
can use the state created to get an estimate for the phase of eigenvalue corre-
sponding to the eigenstate using the methods covered in this chapter or more
advanced methods (such as Maximum Likelihood Estimation).

 The amplitude estimation algorithm extends QPE to estimate the number of
good outcomes, called quantum counting, or estimate the probability of good
outcomes. This algorithm can drastically reduce the number of measurements
needed to obtain a very good estimate for the number or the probability of the
set of good outcomes but at the expense of adding more qubits and performing
a more complex quantum computation.



Part 3

Quantum solutions:
Optimization and beyond

Many of today’s most challenging computational problems are optimiza-
tion problems—from portfolio management to supply chain logistics. This final
part of the book shows how quantum computing can tackle these problems by
combining the fundamental building blocks you’ve learned into sophisticated
quantum optimization techniques.

 The journey begins in chapter 10 with an essential pattern: encoding classical
functions into quantum states. Chapter 11 introduces Grover adaptive search and
guides you through implementing your own quantum optimizer. Chapter 12 con-
cludes by opening windows to advanced quantum computing topics, showing
you where your quantum computing journey can take you next.





Encoding functions
in quantum states
In classical computing, we can use several data structures to represent pairs, such as
attributes and corresponding values or the inputs and outputs of a function. One
such data structure is a dictionary, where unique keys are mapped to specific val-
ues. In this chapter, we will learn how to represent such integer key–value pairs in a
quantum state. We will use two qubit registers: one to represent keys and one to
represent values. We will entangle the registers so that if a measurement is per-
formed, the outcome will contain a key paired with its corresponding value.

NOTE You can think of integer key–value pairs as a quantum dictionary. 

We will use the frequency-value-encoding method introduced in chapter 8 to
encode integer-valued functions by entangling inputs in one register with outputs

This chapter covers 
 Representing integer key–value pairs in 

quantum states

 Extending frequency (value) encoding to 
(polynomial) function encoding

 Using Grover’s algorithm to search for 
function values
253
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in another. We encode a value in a single quantum register by creating a geometric
sequence state where the encoded value is reflected in the (progression of the) phases
of the state’s amplitudes and then applying the inverse quantum Fourier transform
(IQFT). 

 Figure 10.1 shows the concepts discussed in this chapter. We will learn how to
encode various functions, including the weight and value functions in the knapsack
example problem discussed in chapter 2. Then we will look at other problems that use
this encoding method, such as searching for function values with Grover’s algorithm.

10.1 Encoding function inputs and outputs
In this section, we will encode the integer inputs and outputs of a function in a quan-
tum state. We will use two registers, which we will call the key and value registers. The
key register encodes function inputs, and the value register encodes the correspond-
ing outputs. 

 Let’s denote the number of qubits in the key register with n and the number of
qubits in the value register with m. This allows for encoding functions with 2n integer
inputs and 2m integer outputs. If a measurement is performed, the key part of the out-
come represents an input value of the encoded function, and the value part of the
outcome represents the corresponding output value.

 For example, we can encode a function f with the set {0, …, 7} as inputs and with
values in the set {0, …, 7} in a quantum state with n = 3 key qubits and m = 3 value
qubits. Figure 10.2 shows an example measurement outcome representing the input–
output pair (2, 4). Note that the registers are shown in an intuitive order, but when we

Value encoding

Quantum dictionary
(key–value encoding)

Grover operator

Value search Figure 10.1 A dependency diagram of 
concepts covered in this chapter

0 1 0

Key register

1 0 0

Value register

Figure 10.2 An example measurement outcome of a quantum 
state with n = 3 key qubits and m = 3 value qubits and an encoded 
function f representing the input–output pair (2, 4)
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implement this method in the next section, the value-register qubits will be the left-
most qubits.

10.1.1 Encoding a simple function

To start, let’s encode key–value pairs where the value is the sum of the binary digits in
the key (for example, the sum of the binary digits in the key 011 is 2). If we use a key
register with n = 3 qubits, the sum of the binary digits of an integer k, with 0 ≤ k < 2n, is
given by the expression 

where k0, k1, and k2 are 0 or 1 (the binary digits of k).
 We know that the outputs of this function will be integers between 0 and 3, so we’ll

need two qubits for the value register (m = 2). The key–value pairs we will encode are
shown in table 10.1.

First we create a circuit with two registers:

from sim_circuit import QuantumRegister, QuantumCircuit

n_key = 3
n_value = 2

Exercise 10.1
What measurement outcomes (using n = 3 key qubits and m = 3 value qubits) would
represent the input–output pair (0, 1)?

Table 10.1 The inputs and outputs and the corresponding key and value register binary outcomes

Input (k) Key register Output (s(k)) Value register

0 000 0 00

1 001 1 01

2 010 1 01

3 011 2 10

4 100 1 01

5 101 2 10

6 110 2 10

7 111 3 11
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key = QuantumRegister(n_key)
value = QuantumRegister(n_value)
qc = QuantumCircuit(key, value)

We start with an equal superposition in both registers:

for i in range(n_key):      
    qc.h(key[i])            

for i in range(n_value):      
    qc.h(value[i])            

As mentioned, we will use the value encoding pattern we learned in chapter 6 to cre-
ate a geometric sequence state where the step-angle parameter θ is calculated from
the given value v using the formula θ = v 2π/2n. For example, if n = 3 and v = 2, the
(step) angle parameter is θ = v 2π/2n = π/2.

NOTE Remember, in a geometric sequence state, the phase of the kth ampli-
tude is kθ.

To encode key–value pairs where the value is the sum of the binary digits in the key,
we can use the binary decomposition of integers.

Binary decomposition of integers
An integer k with 0 ≤ k < 2n can be represented as a binary string with n digits. We
can generate the positions of the digits that are 1 using the following code:

def one_digits(n, k):
    for i in range(n):
        if k & (1 << i):
            yield i

For example, the binary form of k = 4 with n = 3 digits is 100, so the function
one_digits will yield position 2:

n = 3
k = 4

for i in one_digits(n, k):
    print(i)

2

As we know, the decimal form of an integer k, where 0 ≤ k < 2n, is the sum of powers
of 2 corresponding to these positions. The value k = 4 is decomposed into powers
of 2 as follows:

sum([2**i for i in one_digits(n,k)])

Puts the key register 
in equal superposition

Puts the value register 
in equal superposition
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We use a sequence of controlled phase rotations to create geometric quantum
states. Each 1 digit in the key register part of the outcome contributes a value of 1,
which corresponds to an angle of θ = 2π/2n. For each 1 digit in the key register part
of the outcome, each qubit i in the value register (for 0 ≤ i < m) contributes an angle
of 2iθ = π/2n–1–i:

for j in range(n_key):
    for i in range(n_value):
        qc.cp(pi / 2 ** (n_key-1-i), key[j], value[i])

After this step, the amplitudes of the outcomes with the same key form a geometric
sequence that reflects the (frequency) value corresponding to the key. Figure 10.3
shows a modified state table where the amplitudes are grouped by key register out-
comes: the phases of the amplitudes increase by the step angle that corresponds to the
value we want to encode in the value register.

Finally, we apply the IQFT to the value register:

qc.iqft(value, swap=True)

Remember from chapter 8 that when we prepare a geometric sequence with qubits in
reverse order, we can skip the swaps in the IQFT. We will apply controlled phase rota-
tions with the same angles as before to the qubits in reverse order (qubit i becomes
qubit n – i – 1):

for j in range(n_key):
    for i in range(n_value):
        qc.cp(pi / 2**i, key[j], value[i])

qc.iqft(value[::-1], swap=False)

We can use this sum representation of k to obtain a sum representation of kθ for a
given angle θ. For example, if n = 3 and θ = π/4, the multiple 4θ can be expressed as

sum([2**i * theta for i in one_digits(n,k)])

The following code snippet verifies that the decomposition is correct:

from math import pi
from util import is_close

theta = pi/4
assert is_close(4*theta, sum([2**i * theta for i in one_digits(n, k)]))

Exercise 10.2
Check that the amplitudes of the outcomes having 7 as a key match the geometric
sequence for θ = 3π/4.
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In this chapter, we will use a utility function grid_state to visualize a quantum state as
a grid. This representation uses only the amplitude bar column of a state table and
reorganizes it into a two-dimensional table where each column represents an input
and each row represents an output. For each input (column), the encoding of a func-
tion will have a single row with a nonzero amplitude:

from util import grid_state

grid_state(qc.run(), n_key, neg=False, show_probs=False)

NOTE We can use the grid_state function parameter show_probs to include
the numeric probability next to the amplitude bar. We can also use the

s(0) = 0

v = 0 = 0, θ

s(1) = 1

v = 1 =, θ
π

4

s(2) = 1

v = 1 =, θ
π

4

s(3) = 2

v = 2 =, θ
π

2

s(4) = 1

v = 1 =, θ
π

4

s(5) = 2

v = 2 =, θ
π

2

s(6) = 2

v = 2 =, θ
π

2

s(7) = 3

v = 3 =, θ
3π

4

Figure 10.3 A quantum state where the value register encodes a geometric sequence for each key. 
The angle parameter of a geometric sequence reflects the value corresponding to its key.
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parameter neg if we are working with negative values, as we will see in the
next section. 

The resulting grid visualization is shown in figure 10.4. If we measure the illustrated
state, we will get a measurement outcome where the key register and the value register
represent a key–value pair. 

TIP The binary outcome will have the value register followed by the key reg-
ister due to the order of the registers when we create the circuit.

10.1.2 Encoding the knapsack problem

In chapter 2, we looked at an example of a common binary optimization problem: the
knapsack problem. In this example, we have three items with the values and weights
shown in table 10.2. We use three registers to encode each of the possible selections
and the weight and value of each selection (see figure 10.5). 

NOTE You can think of these three registers as a dictionary with two values
for each key.

To represent the possible selections, we use a register with three qubits, one for each
item. If an item is included in the selection, the corresponding qubit has a value of 1.

Table 10.2 The items, weights, and values for the example knapsack problem

Item label Value Weight

0 2 ($2,000) 3

1 3 ($3,000) 2

2 1 ($1,000) 1

0 = 000 1 = 001 2 = 010 3 = 011 4 = 100 5 = 101 6 = 110 7 = 111

3 = 11

2 = 10

1 = 01

0 = 00

Figure 10.4 Grid visualization of the encoded function inputs (columns) and outputs (rows)

Selection WeightValue

Figure 10.5 Three registers encoding an 
item selection, its total value, and its total 
weight for solving the knapsack problem
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Otherwise it has a value of 0. Table 10.3 shows the value and weight of each possible
combination of items.

We can express the value and weight of each selection using linear functions of binary
variables:

where k0, k1, and k2 are binary variables indicating whether an item is included in the
knapsack.

Let’s encode the value for each possible selection. First we create a circuit with just the
selection and value registers, and we put both in equal superposition:

n_key = 3
n_value = 3

Table 10.3 Each possible selection of items and the corresponding value and weight

Selection Value Weight

000 0 0

001 2 3

010 3 2

011 5 5

100 1 1

101 3 4

110 4 3

111 6 6

A quick review of linear functions of binary variables
A linear function of binary variables is a mathematical expression of the form

where x0, …, xn–1 are either 0 or 1 and c, c0, …, cn–1 are constant real numbers.
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key = QuantumRegister(n_key)
value = QuantumRegister(n_value)
qc = QuantumCircuit(key, value)

for i in range(n_key):
    qc.h(key[i])

for i in range(n_value):
    qc.h(value[i])

We can represent the linear function

with a list of tuples where the first element is the coefficient and the second element is
a list of the variables in the term (i.e., the qubit indices corresponding to the binary
variable):

terms = [(2, [0]), (3, [1]), (1, [2])]

We can use the following for loop to apply the controlled phase rotations:

for (coeff, vars) in terms:
    for i in range(n_value):
        qc.cp(pi * 2 ** -i * coeff, key[vars[0]], value[i])

Next we apply the IQFT to the value register:

qc.iqft(value[::-1], swap=False)

The resulting grid state visualization is shown in figure 10.6. We can see that only out-
comes that correspond to item selections (columns) and their values (rows) are possible.

0 = 000 1 = 001 2 = 010 3 = 011 4 = 100 5 = 101 6 = 110 7 = 111

7 = 111

6 = 110

5 = 101

4 = 100

3 = 011

2 = 010

1 = 001

0 = 000

Figure 10.6 The value (rows) of each possible knapsack selection (columns)
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Next we will encode the weight function. We will start with only three qubits for the
weight register. Later, we will need to use four qubits for the weight register when we
adjust the weight function to help us search for specific outcomes. 

 The weight function can be represented with the following list of tuples:

terms = [(3, [0]), (2, [1]), (1, [2])]

We can encode this function using the following Python code:

n_key = 3
n_weight = 3

key = QuantumRegister(n_key)
weight = QuantumRegister(n_weight)
qc = QuantumCircuit(key, weight)

for i in range(n_key):
    qc.h(key[i])

for i in range(n_weight):
    qc.h(weight[i])

for (coeff, vars) in terms:
    for i in range(n_weight):
        qc.cp(pi * 2 ** -i * coeff, key[vars[0]], weight[i])

qc.iqft(weight[::-1], swap=False)

The resulting grid state visualization is shown in figure 10.7.

0 = 000 1 = 001 2 = 010 3 = 011 4 = 100 5 = 101 6 = 110 7 = 111

7 = 111

6 = 110

5 = 101

4 = 100

3 = 011

2 = 010

1 = 001

0 = 000

Figure 10.7 The weight (rows) of each possible knapsack selection (columns) 
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10.1.3 Encoding polynomials of binary variables

What if the function we want to encode is not a linear function? For example, what if
we want to encode the function f(k) = k2 + 2 (where 0 ≤ k < 2n)? To do this, we will
need to represent polynomial functions of an integer variable as functions of binary
variables, a polynomial of binary variables. 

 We can write an integer k as a sum of powers of 2:

where kj is 0 or 1. Using this equation, if n = 2, then an integer k can be expressed with

Using the previous expression of an integer k for n = 2, we can also write k2 as

because the square of a binary digit is itself. Now we can express the function f(k) = k2

+ 2 for n = 2 as the polynomial of binary variables:

Each term of the polynomial is called a monomial. 

Exercise 10.3
Write the expression of an integer k > 0 as a function of n = 3 binary variables.

Example inputs and outputs of a polynomial of binary variables
Let’s check the inputs and outputs using the polynomial of binary variables defined
previously:
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 As in the previous example, we will use a list of tuples to represent the terms of the
polynomial we want to encode. Each term, or monomial, is expressed as a tuple where
the first element is the coefficient and the second element is a list of the binary vari-
ables (qubits). To include a constant, we include a tuple with an empty list as the sec-
ond element:

terms = [(4, [1]), (4, [1, 0]), (1, [0]), (2, [])]

To encode each term, we need to account for the number of variables for each coeffi-
cient as well as any constants. The function encode_term defined in the following list-
ing applies the phase rotations according to the number of coefficients in the term. 

def encode_term(coeff, vars, circuit, key, value):
    for i in range(len(value)):
        if len(vars) > 1:
            circuit.mcp(pi * 2 ** -i * coeff, [key[j] for j in vars], 

value[i])
        elif len(vars) > 0:
            circuit.cp(pi * 2 ** -i * coeff, key[vars[0]], value[i])
        else:
            circuit.p(pi * 2 ** -i * coeff, value[i])

The coefficient of a term only contributes to the total output when all its variables are 1.
Therefore, the phase rotations are controlled on all the variables with a multi-control
phase gate (mcp). The constant is added to every output, so there is no control for the
phase gate applied for a constant term. 

 Now we can use the build_polynomial_circuit function defined next to encode
any polynomial expressed as a list of tuples (terms), using a key register with key_size
qubits and a value register with value_size qubits. 

def build_polynomial_circuit(key_size, value_size, terms):
    key = QuantumRegister(key_size)
    value = QuantumRegister(value_size)
    circuit = QuantumCircuit(key, value)

    for i in range(len(key)):
        circuit.h(key[i])

    for i in range(len(value)):
        circuit.h(value[i])

    for (coeff, vars) in terms:
        encode_term(coeff, vars, circuit, key, value)

    circuit.iqft(value[::-1], swap=False)

    return circuit

Listing 10.1 Creating the circuit that encodes a given term

Listing 10.2 Creating the circuit for encoding a polynomial in a quantum state
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Next we encode our polynomial of binary variables. We will need m = 4 value qubits to
encode the outputs:

n_key = 2
n_value = 4

qc = build_polynomial_circuit(n_key, n_value, terms)

The resulting grid visualization is shown in figure 10.8.

Let’s look at another example. This time, let’s consider the function f(k) = k2 – 5k + 7
with integer inputs {0, 1, 2, 3}. To represent all the inputs, we need n = 2 qubits.
When we expand k as a binary expression, this function becomes a polynomial of
binary variables:

The following list is a specification of this polynomial:

terms = [(-6, [1]), (4, [1, 0]), (-4, [0]), (7, [])]

0 = 00 1 = 01 2 = 10 3 = 11

15 = 1111

14 = 1110

13 = 1101

12 = 1100

11 = 1011

10 = 1010

9 = 1001

8 = 1000

7 = 0111

6 = 0110

5 = 0101

4 = 0100

3 = 0011

2 = 0010

1 = 0001

0 = 0000

Figure 10.8 The quantum state 
encoding the function f(k) = k2 + 2, 
where 0 ≤ k < 4
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We can encode this polynomial using n = 2 key qubits and m = 3 value qubits:

n_key = 2
n_value = 3

qc = build_polynomial_circuit(n_key, n_value, terms)

The resulting grid visualization is shown in figure 10.9. 

10.1.4 Complexity of polynomial-encoding circuits

Let’s do a quick analysis of the complexity of encoding functions in quantum states
using this method. Assume the following:

 We have an n-qubit key register.
 We have an m-qubit value register.
 The polynomial has t terms (monomials).

The circuit that encodes the term coefficients uses

 n + m Hadamard gates
 mt controlled phase gates

Then we apply the IQFT to the value register using

 m Hadamard gates
 m(m – 1)/2 controlled phase gates

The total number of gates applied is

0 = 00 1 = 01 2 = 10 3 = 11

7 = 111

6 = 110

5 = 101

4 = 100

3 = 011

2 = 010

1 = 001

0 = 000

Figure 10.9 The quantum state encoding 
the function f(k) = k2 – 5k + 7 where 
0 ≤ k < 4
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We can check that this is the total number of gates using the following assert statement:

qc = build_polynomial_circuit(n, m, terms)
t = len(terms)
assert len(qc.transformations) == n + (t + 2)*m + m*(m - 1 )/2

For a quadratic polynomial (used in many optimization problems), the number of
terms is at most n(n+1)/2 + 1 (one constant term, n single-variable terms, and n(n–1)/2
two-variable terms). This means the number of terms for encoding a quadratic poly-
nomial of binary variables is a low-degree polynomial in the number of qubits.

 The number of control qubits is also an important factor in complexity analysis.
Each term (monomial) of a polynomial of binary variables requires a multicontrolled
phase gate. The number of control qubits is the number of binary variables in the
term. If we limit the number of variables in a term to two, we end up with a quadratic
polynomial, which is often enough to encode difficult optimization problems. 

10.1.5 Representing negative values

We can map the 2m binary strings of length m > 0 to any range of integers of length 2m.
By default, we work with the range [0, 2m – 1] of integers. Two’s Complement repre-
sentation allows us to map the binary strings that start with 0 to the range [0, 2m–1 –1]
and those that start with 1 to the range [–2m–1, –1]. If you need a refresher on Two’s
Complement, you can refer to appendix A.1. 

 For example, to encode the function f(k) = k2 – 3 for integer inputs {0, 1, 2, 3}, we
express the function as a polynomial of binary variables:

where k0 and k1 are the binary digits of an input.
 To do this, all we have to do is add a constant term to the list:

terms = [(4, [1]), (4, [1, 0]), (1, [0]), (-3, [])]

The lowest output is –3, and the highest output is 0. To encode negative values, we will
use Two’s Complement:

n_key = 2
n_value = 4

qc = build_polynomial_circuit(n_key, n_value, terms)

To visualize the resulting state, we can set the third parameter of the grid_state func-
tion to neg = True:

grid_state(qc.run(), n_key, neg = True, show_probs = False)
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We get the state shown in figure 10.10. The input 0 maps to the output –3, which we
represent using Two’s Complement as 1101. We can see that the shape stays the same
but is shifted. 

10.2 Searching for function values
After a function is encoded in a quantum state, all the input–output pairs have equal
measurement probability. If we are interested in specific outcomes, we can use Gro-
ver’s algorithm to amplify the probability of measuring those outcomes. For example,
we can search for pairs where the output is negative or within a given range. 

 We can use simple oracles that match binary digits. These oracles are straightfor-
ward to implement and extremely useful. Figure 10.11 shows the range of values
(highlighted) specified by various oracles. In the first table, we use an oracle that
matches 1 in the first digit of the value register to find values in the upper half of the
range of outcomes. In the second table, we use the same oracle that matches 1 in the
first digit to find all the pairs with negative output using Two’s Complement. We can
use this oracle to search for positive or negative outputs of an encoded function. In
the third table, we use an oracle that matches 1 in the first digit and 0 in the second
digit to find the lower half of the range of negative values.

0 = 00 1 = 01 2 = 10 3 = 11

7 = 0111

6 = 0110

5 = 0101

4 = 0100

3 = 0011

2 = 0010

1 = 0001

0 = 0000

–1 = 1111

–2 = 1110

–3 = 1101

–4 = 1100

–5 = 1011

–6 = 1010

–7 = 1001

–8 = 1000 Figure 10.10 The quantum state encoding 
the function f(k) = k2 – 3 for 0 ≤ k < 4
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The following two Python functions create oracles that match 1 or 0 in the position
tag_bit:

def oracle_match_1(bits, tag_bit):
    q = QuantumRegister(bits)
    qc = QuantumCircuit(q)

    qc.p(pi, tag_bit)

    return qc

def oracle_match_0(bits, tag_bit):
    q = QuantumRegister(bits)
    qc = QuantumCircuit(q)

    qc.x(q[tag_bit])
    qc.p(pi, tag_bit)
    qc.x(q[tag_bit])

    return qc

We can use these oracles to construct Grover operators. For example, say we want to
find input values of the function f(k) = k + 1 where the output value is 4 or greater.

First, let’s encode the function f(k) = k + 1 with n = 2 key qubits:

n_key = 2
n_value = 3

terms = [(2, [1]), (1, [0]), (1, [])]

prepare = build_polynomial_circuit(n_key, n_value, terms)

Exercise 10.4
Write the function f(k) = k + 1 as a polynomial of n = 2 binary variables (where 0 ≤ k
< 2n).

Value

7 = 111

6 = 110

5 = 101

4 = 100

3 = 011

2 = 010

1 = 001

0 = 000

Value

3 = 011

2 = 010

1 = 001

0 = 000

–1 = 111

–2 = 110

–3 = 101

–4 = 100

Value

3 = 011

2 = 010

1 = 001

0 = 000

–1 = 111

–2 = 110

–3 = 101

–4 = 100

Figure 10.11 (Left) Values identified by an 
oracle that matches 1 in the first digit. (Center) 
Values (using Two’s Complement) identified by an 
oracle that matches 1 in the first digit. (Right) 
Values (using Two’s Complement) identified by an 
oracle that matches 1 in the first digit and 0 in the 
second digit.
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The state after encoding the function with given coefficients is shown in figure 10.12.
The output values that meet our criteria are highlighted.

Now we can create an oracle that matches 1 in the first digit of the value register and
use it to create a Grover operator using the grover_circuit function from chapter 6:

from algo import grover_circuit

prepare = build_polynomial_circuit(n_key, n_value, terms)
oracle = oracle_match_1(n_key + n_value, n_key + n_value - 1)

qc = grover_circuit(prepare, oracle, 1)

The state after applying one iteration of this Grover operator is shown in figure 10.13.
The only key–value pair that meets our criteria has a magnitude of 1. If we measure
this state, we will find our desired input–output pair.

0 = 00 1 = 01 2 = 10 3 = 11

7 = 111

6 = 110

5 = 101

4 = 100

3 = 011

2 = 010

1 = 001

0 = 000

Figure 10.12 The quantum state encoding 
the function f(k) = k + 1 for 0 ≤ k < 4. The 
values that meet our search criteria are 
highlighted.

0 = 00 1 = 01 2 = 10 3 = 11

7 = 111

6 = 110

5 = 101

4 = 100

3 = 011

2 = 010

1 = 001

0 = 000

Figure 10.13 The result of applying a Grover 
iteration to the quantum state encoding the 
function f(k) = k + 1, for 0 ≤ k < 4, with an 
oracle that tags outcomes with 1 as the 
first digit in the value register
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Let’s look at searching for negative values. For example, let’s encode the function
f(k) = k2 – 5 for n = 2 and search for outputs less than –4:

n_key = 2
n_value = 4

terms = [(4, [1]), (4, [1, 0]), (1, [0]), (-5, [])]

prepare = build_polynomial_circuit(n_key, n_value, terms)

The resulting state table is in figure 10.14. The desired output values are highlighted.

Next we need to define an oracle that matches 1 in the first digit and 0 in the second
digit of the value register. We will use this oracle in our Grover operator:

q = QuantumRegister(n_key + n_value)
oracle = QuantumCircuit(q)

oracle.x(q[n_key + n_value - 2])
oracle.cp(pi, n_key + n_value - 2, n_key + n_value - 1)
oracle.x(q[n_key + n_value - 2])

qc = grover_circuit(prepare, oracle, 1)

0 = 00 1 = 01 2 = 10 3 = 11

7 = 0111

6 = 0110

5 = 0101

4 = 0100

3 = 0011

2 = 0010

1 = 0001

0 = 0000

–1 = 1111

–2 = 1110

–3 = 1101

–4 = 1100

–5 = 1011

–6 = 1010

–7 = 1001

–8 = 1000

Figure 10.14 The quantum state encoding 
the function f(k) = k2 – 5 for 0 ≤ k < 4. The 
values that meet the search criteria are 
highlighted.
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The resulting state table is shown in figure 10.15.

The ideal number of Grover operator applications depends on how many outcomes
are specified by a given oracle. Most of the time, this is not known precisely before-
hand. We can use quantum counting to estimate the number of desired outcomes,
or we can try random numbers of Grover operator applications. In the next chapter,
we will look at the Grover adaptive search method, which provides a schedule for
the number of Grover operator applications to try in a sequence to obtain the
desired outcome. 

10.3 Finding zeros of polynomial functions
Algorithms that find the inputs where the value of a function is 0 have numerous
applications across various fields. In financial engineering, investment portfolios are
optimized by finding where the derivative of a profit or cost function is 0. In statistics
and machine learning, they are used to find parameters that minimize the error (dif-
ference between predicted and actual outcomes). These algorithms are also applied
in cryptography schemes. In practice, the search space (input–output pairs of a func-
tion) can be extremely large. We will look at a simple example to understand how we
can implement a quantum solution to these types of problems. 

0 = 00 1 = 01 2 = 10 3 = 11

7 = 0111

6 = 0110

5 = 0101

4 = 0100

3 = 0011

2 = 0010

1 = 0001

0 = 0000

–1 = 1111

–2 = 1110

–3 = 1101

–4 = 1100

–5 = 1011

–6 = 1010

–7 = 1001

–8 = 1000

Figure 10.15 The result of applying a Grover 
iteration to the quantum state encoding the 
function f(k) = k2 – 5, for 0 ≤ k < 4, with an 
oracle that tags outcomes with 1 as the first 
digit and 0 as the second digit in the value 
register
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 Let’s again consider a quadratic polynomial

for 0 ≤ k < 8.
 We can encode this function in a quantum state with the following code:

n_key = 2
n_value = 4

terms = [(4, [1]), (4, [1, 0]), (1, [0]), (-4, [])]

qc = build_polynomial_circuit(n_key, n_value, terms)

The grid state table in figure 10.16 is also a visual representation of the graph of the
function (a parabola). The row corresponding to the 0 value is highlighted.

Next we can use the following Python function to create an oracle that specifies out-
comes with all 0 digits in the value register:

0 = 00 1 = 01 2 = 10 3 = 11

7 = 0111

6 = 0110

5 = 0101

4 = 0100

3 = 0011

2 = 0010

1 = 0001

0 = 0000

–1 = 1111

–2 = 1110

–3 = 1101

–4 = 1100

–5 = 1011

–6 = 1010

–7 = 1001

–8 = 1000

Figure 10.16 The quantum state encoding 
the function f(k) = k2 – 4, where 0 ≤ k < 4. 
The value register corresponding to outcome 
0 is highlighted.
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def oracle_match_0_multi(bits, tag_bits):
    q = QuantumRegister(bits)
    qc = QuantumCircuit(q)

    for t in tag_bits:
        qc.x(q[t])

    qc.mcp(pi, [q[t] for t in tag_bits[:-1]], q[len(q) - 1])

    for t in tag_bits:
        qc.x(q[t])

    return qc

We create the oracle by passing each of the value-register qubits as tag_bits:

prepare = build_polynomial_circuit(n_key, n_value, terms)

oracle = oracle_match_0_multi(
    n_key + n_value,
    [n_key + i for i in range(n_value)]
)

qc = grover_circuit(prepare, oracle, 1)

The resulting state is shown in figure 10.17.

0 = 00 1 = 01 2 = 10 3 = 11

7 = 0111

6 = 0110

5 = 0101

4 = 0100

3 = 0011

2 = 0010

1 = 0001

0 = 0000

–1 = 1111

–2 = 1110

–3 = 1101

–4 = 1100

–5 = 1011

–6 = 1010

–7 = 1001

–8 = 1000

Figure 10.17 The result of applying a Grover 
iteration to the quantum state encoding the 
function f(k) = k2 – 4, for 0 ≤ k < 4, with an 
oracle that tags outcomes with 0 in the 
value register
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We can use this method to efficiently find the 0s of our encoded function. As men-
tioned, in the next chapter we will learn how to search for minimum values. 

Summary
 Integer key–value pairs, such as input–output pairs of a function, can be repre-

sented in a quantum state using two registers: a key register for inputs and a value
register for outputs. The registers are entangled so that if a measurement is per-
formed, the outcome will contain a key paired with its corresponding value.

 We can encode any polynomial function of an integer variable by represent-
ing it as a function of binary variables, a polynomial of binary variables. The
terms of polynomials of binary variables are represented as a list of tuples in
the implementation.

 The method is implemented with the following steps:
– Create two registers with enough qubits to represent the inputs and outputs.

Negative values are represented using Two’s Complement.
– Put the key register and value register in equal superposition.
– Phase rotations are applied to the value register and controlled on the key

register. This creates a state where the amplitudes of the outcomes with the
same key form a geometric sequence that reflects the value corresponding to
the key.

– Apply the IQFT to the value register.
 After a function is encoded in a quantum state, all the input–output pairs have

equal measurement probability.
 To find specific outcomes, such as inputs where the function is 0 or inputs

where the output is negative, we can use Grover’s algorithm. 



Search-based
quantum optimization
Grover’s algorithm can offer a quadratic speed increase (in the number of queries)
over classical approaches for certain optimization problems. We have discussed
using Grover operators in several contexts, including search, quantum counting,
and amplitude estimation.

NOTE Remember, to implement Grover’s algorithm for a given operator
A that prepares the quantum state to be searched and a quantum oracle O,
we build the Grover operator G. Then we can use the operator G jA to
increase the probability of the outcomes tagged by the oracle, with a well-
chosen integer j > 0.

In this chapter, we introduce a method called Grover adaptive search (GAS) that uses
Grover’s algorithm to solve optimization problems where the number of good out-
comes is not known. We will use GAS to build a Grover optimizer, a hybrid algorithm

This chapter covers 
 Searching for desired outcomes with Grover 

adaptive search

 Finding the maxima or minima of a polynomial 
function using a Grover optimizer

 A solution for the knapsack problem
276
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that dynamically adjusts the number of iterations and the parameters of the circuit
that prepares the state to be searched to efficiently find optimal solutions. Then we
will use the Grover optimizer method to find a solution to the knapsack problem. The
concepts introduced in this chapter are outlined in figure 11.1. 

NOTE A hybrid algorithm combines classical and quantum computational tech-
niques to solve problems. Outcomes of the quantum computation are pro-
cessed classically before the quantum computation is adjusted and repeated. 

11.1 Finding desired outcomes with Grover adaptive search
We learned how to increase the probability of measuring one or more desired out-
comes of a quantum computation through the application of a number of Grover iter-
ations. Repeatedly applying the Grover operator can increase the probability of
measuring a desired outcome to 0.5 or higher. 

 In chapter 10, we used Grover’s algorithm to search for desired function values. In
these example problems, the operator A encoded input–output pairs of a function in
a quantum state, and we applied a fixed, small number of Grover iterations.

 The ideal number of the Grover iterations depends on the number of desired
outcomes. However, in many contexts, the number of desired outcomes is not
known. We can use the amplitude-estimation algorithm to count the good outcomes
(using quantum counting), as discussed in chapter 9. However, amplitude estima-
tion is a computationally expensive algorithm, especially for the currently available
quantum hardware.

 As in the Grover search algorithm, assume that we are given a circuit, A, that pre-
pares a quantum state and a quantum oracle, O, that tags the desired outcomes, and

Quantum (bit) oracles

Grover adaptive search

Grover’s algorithm

Function value search

Function encoding

Grover optimizer
Figure 11.1 A dependency 
diagram of concepts covered 
in this chapter
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we want to build the corresponding Grover operator G. Instead of using the ideal
number of iterations, the Grover adaptive search method uses a schedule to try various
numbers of iterations. We can use several methods to choose the number of itera-
tions, including these:

 Randomly choosing from a range whose size increases exponentially1

 Using a fixed pattern (e.g., [0, 0, 0, 1, 1, 0, 1, 1, 2, 1, 2, 3, 1, 4, 5, 1, 6, 2, 7, 9, 11,
13, 16, 5, 20, 24, 28, 34, 2, 41, 49, 4, 60])2

These schedules offer theoretical efficiency guarantees that we will not cover here.
Some schedules assume single-shot computations.

 Note that zero iterations means not using the Grover operator but directly perform-
ing a measurement in the hope that a desired outcome will be measured. For ease of
understanding, this chapter’s implementations will use a simple version of a fixed sched-
ule with just two iteration counts (zero and one) and multiple-shot computations.

 In addition to a schedule for applying iterations, we need to define a stopping con-
dition for ending the search in case a good outcome is not measured during the pro-
cess (e.g., the number of failures to measure a good outcome). The GAS algorithm
for finding a desired (good) outcome consists of the following steps:

1 Choose a number r ≥ 0 of iterations according to the chosen schedule.
2 Prepare an initial quantum state using the circuit A, apply r iterations of the

Grover operator G, and measure the resulting state.
3 Check whether the measured outcome is a good outcome.

a If the outcome is a good outcome, the search is complete.
b If the outcome is not a good outcome, check the stopping condition, which

indicates whether it’s worth continuing the search. If the condition is satis-
fied, give up on the search, inferring that there is no desired outcome. If the
stopping condition is not satisfied, go back to step 1, choose the next value
for r according to the chosen schedule, and repeat the steps.

This is a hybrid algorithm. Only step 2 involves a quantum computation; the rest are
classical processing steps. Figure 11.2 outlines the steps of the GAS algorithm. 

 Let’s look at the example of searching for nonnegative outputs of the function
f(k) = _k2 – 5 defined for k = 0, 1, 2, 3. The function table showing inputs and outputs
is shown in table 11.1.

 
 
 

1 Boyer, Michel, et al. Tight bounds on quantum searching. Fortschritte der Physik: Progress of Physics 46(4–5): 493–
505, 1998.

2 Baritompa, William, et al. Grover’s quantum algorithm applied to global optimization. SIAM Journal on Opti-
mization 15(4): 1170–1184, 2005.
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We will represent this function as a polynomial of binary variables that can be encoded
in a quantum state. Remember, we can write an integer k as a sum of powers of 2

where, again, kj (for 0 ≤ j < n) is the jth binary digit of k (starting from the right).
 For n = 2, this expression becomes

and we can express k2 as

because the square of a binary digit is itself. To express the function f(k) = k2 – 5 as a
polynomial of n = 2 binary variables, we add the constant –5 to the previous expres-
sion of k2:

Table 11.1 Function table for the function f(k) = k2 – 5 with 0 ≤ k < 4

k f(k) = k2 – 5

0 –5

1 –4

2 –1

3 4

Choose r

Apply GrA

&
measure

Good
outcome?

Stop?

Success

Failure

YES

NO YES

NO

Figure 11.2 A flow diagram of Grover adaptive search
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where k0 and k1 are 0 or 1 (the binary digits of the input encoded in the key register).
We will use a list of tuples to represent the terms of the polynomial we want to encode,
as introduced in chapter 10. Each term, or monomial, is expressed as a tuple where
the first element is the term’s coefficient and the second element is a list of the indices
of the term’s binary variables (or an empty list if the term is a constant). Therefore,
the term representation of this polynomial is

terms = [(4, [1]), (4, [1, 0]), (1, [0]), (-5, [])]

Now we can encode our polynomial of binary variables using the function build_
polynomial_circuit from chapter 10. We will use n = 4 value qubits to encode the
outputs:

from sim_circuit import *
from algo import build_polynomial_circuit

n_key = 2
n_value = 4

qc = build_polynomial_circuit(n_key, n_value, terms)

Because some outputs of the function are negative, we will use the Two’s Complement
interpretation for the value register. Four qubits allow for the representation of inte-
gers between –8 and 7.

 Remember from chapter 10 that we can set the third parameter of the grid_state
function to neg = True to visualize negative values:

from util import grid_state

grid_state(qc.run(), n_key, neg = True, show_probs = False)

The resulting grid visualization is shown in figure 11.3.
 We can now perform a measurement without applying the Grover operator. When

the proportion of desired outcomes relative to the total number of outcomes is small,
this measurement will likely not succeed in yielding a desired outcome. However,
when we do not know the number of desired outcomes, it is a good idea to perform
one or more measurements without any applications of the Grover operator.

 To search for nonnegative outputs of a function, we use an oracle that matches
outcomes that have 0 as the first digit in the value register. In the grid state visualiza-
tions, these outcomes will be in the top half of the grid representation of the quantum
state. We can use the oracle_match_0 function from chapter 10 to create this oracle.
Remember that oracle_match_0 takes the parameter bits, the total number of qubits
in the circuit, and tag_bit, the position of the tag bit:

from algo import oracle_match_0

oracle = oracle_match_0(n_key + n_value, n_key + n_value - 1)
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Let’s use this oracle to build the Grover operator (using the grover_circuit function
from chapter 6) and apply one iteration:

from algo import grover_circuit

prepare = build_polynomial_circuit(n_key, n_value, terms)

qc = grover_circuit(prepare, oracle, 1)

The state after applying one iteration of this Grover operator is shown in figure 11.4.
It has only one nonzero amplitude, and that amplitude corresponds to a nonnegative
output value. Any measurement will successfully yield this nonnegative function value.

 If we apply two iterations, we get a state with all outputs having equal probability, as
shown in figure 11.5:

qc = grover_circuit(prepare, oracle, 2)

We will now use GAS to build a Grover optimizer that efficiently searches for optimal
outcomes by further adapting computation parameters at each step. 

0 = 00 1 = 01 2 = 10 3 = 11

7 = 0111

6 = 0110

5 = 0101

4 = 0100

3 = 0011

2 = 0010

1 = 0001

0 = 0000

–1 = 1111

–2 = 1110

–3 = 1101

–4 = 1100

–5 = 1011

–6 = 1010

–7 = 1001

–8 = 1000
Figure 11.3 The quantum state encoding 
the function f(k) = k2 – 5 with 0 ≤ k < 4
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0 = 00 1 = 01 2 = 10 3 = 11

7 = 0111

6 = 0110

5 = 0101

4 = 0100

3 = 0011

2 = 0010

1 = 0001

0 = 0000

–1 = 1111

–2 = 1110

–3 = 1101

–4 = 1100

–5 = 1011

–6 = 1010

–7 = 1001

–8 = 1000

Figure 11.4 The quantum state after 
encoding the function f(k) = k2 – 5 with 
0 ≤ k < 4 and applying one Grover iteration
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–6 = 1010

–7 = 1001

–8 = 1000

Figure 11.5 The quantum state encoding 
the function f(k) = k2 – 5 with 0 ≤ k < 4 
after applying two Grover iterations
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11.2 Finding optimal outcomes with the Grover optimizer
We will use the function-encoding method introduced in chapter 10 to incrementally
encode adjusted versions of a given function to search for lower and lower (or higher
and higher) function values. This method, which we refer to as a Grover optimizer,
allows us to efficiently find the global minimum or maximum of a given function. 

 As illustrated in the flow diagram in figure 11.6, we start with an operator A that
prepares the quantum state to be searched and a Grover operator G that is applied
according to a chosen schedule. We use the result of each search to update the param-
eters and configuration of the circuit A.

Let’s walk through the steps of an example problem using the Grover optimizer method.
In this example, we want to find the maximum of the function

where 0 ≤ k < 8. The graph of this function has the shape of an upside-down parabola.
 In this example, the circuit A that prepares the quantum state will be the function-

encoding circuit for a given function f, which we will denote by Af. As illustrated in the
flow diagram in figure 11.6, if we get a good outcome, we update the encoded func-
tion f for the next iteration so the oracle will tag outcomes that will yield a better result
than the one we just found.

 We will perform successive searches to arrive at the maximum value. At each step,
we will decrease the number of search candidates by adjusting the function encoded
in the quantum state.

 Let’s start with the first step, as shown in figure 11.7: constructing the circuit Af that
encodes the function f. The inputs and outputs of the function are shown in table 11.2.

 We will use n = 3 qubits for the key register to represent integer inputs 0 ≤ k < 8 and
m = 6 qubits for the value register to represent the outputs using Two’s Complement:

n_key = 3
n_value = 6

YES

Construct/Update A

Choose r
Apply GRA

&
measure

Progress?

Stop?
Optimal
valueYES

NO

NO

Figure 11.6 A flow chart of the Grover optimizer
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We will express the function as a polynomial of binary variables. First we can rewrite
the function as

We can use the expansion of k for n = 3 as a sum of powers of 2 to express k2 as a poly-
nomial of binary variables

where k0, k1, and k2 are the binary digits of k. To represent the term –k2, we use the
expression of k2 and multiply it by –1:

Table 11.2 Function table for the function f(k) = –(k–3)2 + 3, where 0 ≤ k < 8

k f(k) = –(k–3)2 + 3

0 –6

1 –1

2 2

3 3

4 2

5 –1

6 –6

7 –13

YES

Construct/Update A

Choose r
Apply GRA

&
measure

Progress?

Stop?
Optimal
valueYES

NO

NO

Figure 11.7 Construct or update the circuit A. These parameters are updated based on the results of the 
previous search.
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To represent the term 6k, we use the expression of k as a polynomial of binary vari-
ables and multiply it by 6:

We combine these terms and add the constant -6 to arrive at the representation of the
function f as the polynomial of binary variables:

The list of tuples for the terms of binary variables is as follows:

terms = [(8, [2]), (8, [1]), (5, [0]), (-16, [1, 2]), (-8, [0, 2]), (-4, [0, 1]), 
(-6, [])]

We can check that these terms are correct using the poly function defined in the
chapter code. This function takes the parameters n_key (the number of qubits in the
key register), the list of terms, and an optional print parameter. We can assert that
each output of the polynomial of binary variables is equal to the output of the func-
tion using the following code:

from util import poly

p = poly(n_key, terms, False)
f = lambda k: -(k - 3)**2 + 3

for k in range(len(p)):
    assert(p[k] == f(k))

Representing any function as a polynomial of binary variables
When the number of inputs is large, it is helpful to use Python list comprehensions
to create the list of tuples corresponding to the terms of the binary polynomial to be
encoded. We can write an integer k as a sum of powers of 2

where kj (for 0 ≤ j < n) is the jth binary digit of k and therefore is either 0 or 1. Using
this formula, we can express a term ck, where c is a constant, with this Python list
comprehension

[(c*2**j, [j]) for j in range(n_key)]

where n_key is the number of binary digits for representing function inputs.
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Let’s create the circuit that encodes the function f in a quantum state using the vari-
ables defined previously:

qc = build_polynomial_circuit(n_key, n_value, terms)

The resulting state is illustrated as a grid in figure 11.8.

NOTE Throughout the rest of the chapter, we will use a compact version of
the grid state visualization like the one in figure 11.8.

(continued)

Similarly, we can express k2 as

where we again use the fact that kj
2 = kj for 0 ≤ j < n.

We can express a term ck2, where c is a constant, with this Python list comprehension:

[(c*2**(2*j), [j]) for j in range(n_key)] + [(c*2**(j+l+1), [j, l]) for 
j in range(n_key) for l in range(n_key) if j < l]
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Figure 11.8 The grid state representation 
of the quantum state encoding the function 
f(k) = –(k–3)2 + 3
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We will use a Python dictionary, flow_state, to keep track of the flow state while pro-
gressing through the steps. The items in the dictionary include the following:

 last_good_outcome_results—The best result so far, typically the outcome and
the corresponding value. In this example, we start with (None, -1) because we
are searching for the maximum value.

 failure_count—Count of the number of search steps performed where no
progress was made. We can use this variable in the stop condition.

 circuit_params—A dictionary with the parameters used to build the circuit A.
These parameters may be changed from step to step. In this example, the dic-
tionary contains the two-qubit registers (key and value) and the terms repre-
senting the function to be encoded in the state.

 initial_circuit_params—A copy of the dictionary with the initial circuit
parameters:

import copy

circuit_params = {'n_key': n_key, 'n_value': n_value, 'terms': terms}

flow_state = {
    'last_good_outcome_results': (None, -1),
    'failure_count': 0,
    'circuit_params': circuit_params,
    'initial_circuit_params': copy.deepcopy(circuit_params)
}

We also need to define a stop condition. In this example, we will use the number of
failures (failure_count):

stopping_condition = lambda flow_state: flow_state['failure_count'] > 7

Next we need to choose the number of Grover iterations r ≥ 0 to perform at each step
according to the selected schedule (figure 11.9). In this example, we will use the
schedule [0, 1] for applying the Grover operator.

YES

Construct/Update A

Choose r
Apply GRA

&
measure

Progress?

Stop?
Optimal
valueYES

NO

NO

Figure 11.9 Choose the number of iterations r ≥ 0 to be performed at each step according to the selected 
schedule.
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Now we will build the Grover operator circuit, apply the appropriate number of itera-
tions according to the schedule, and measure the state (see figure 11.10). We build a
Grover operator circuit using the circuit that prepares the quantum state to be
searched for optimal values, and an oracle.

The maximum value of the function that has at least one nonnegative value has to be
nonnegative. To search for nonnegative values, we use an oracle that tags the out-
comes with 0 in the first digit of the value register:

prepare = build_polynomial_circuit(n_key, n_value, terms)

oracle = oracle_match_0(n_key + n_value, n_key + n_value - 1)

Let’s start with r = 0, meaning no Grover iterations are applied. We will simulate 100
measurements of this circuit:

qc = grover_circuit(prepare, oracle, 0)

shots = 100
result = qc.measure(shots = shots)

We can use the results to check whether we made progress in our search (figure 11.11).
To check whether we made progress toward finding the maximum, we start by getting
the most-frequent measurement outcome at this step.

 The most frequent measurement outcome is

outcome = max(result['counts'].items(), key = lambda k: k[1])[0]

YES

Construct/Update A

Choose r
Apply GRA

&
measure

Progress?

Stop?
Optimal
valueYES

NO

NO

Figure 11.10 Apply the Grover operator GrA, where r is the number of iterations according to the chosen 
schedule.



28911.2 Finding optimal outcomes with the Grover optimizer
We can use the following function to get the input–output pair that this outcome cor-
responds to:

from util import padded_bin

def process_outcome(outcome, state):
    binary_string = padded_bin(n_key + n_value, outcome)
    k = int(binary_string[n_value:], 2)
    v = int(binary_string[:n_value], 2)

    if v >= 2**(n_value - 1):
        v = v - 2**n_value

    v -= (
        state['circuit_params']['terms'][0][0] -
        state['initial_circuit_params']['terms'][0][0]
    )

    assert(v == p[k])
    return (k, v)

Note that we have an equal likelihood of getting any of the encoded input–output
pairs at this step because we did not apply a Grover operator:

outcome_results = process_outcome(outcome, flow_state)
print(outcome_results)

In this particular run, the output shows this input–output pair:

(5, -1)

Keep in mind that you may get a different result each time you run the code.
 We will use the progress function to check whether the outcome is better than the

previous result:

YES

Construct/Update A

Choose r
Apply GRA

&
measure

Progress?

Stop?
Optimal
valueYES

NO

NO

Figure 11.11 Check whether the result of this search is better than the result in the previous step (or the default 
value).
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def progress(results, state):
    if state['last_good_outcome_results'][1]:
        return results[1] > state['last_good_outcome_results'][1]
    return True

We set the last found value to be –1 for the first step. In this case, the progress func-
tion returns False:

progress(outcome_results, flow_state)

False

So we increase the failure_count variable as we failed to make progress:

flow_state['failure_count'] += 1

Now we check whether the stop condition is satisfied (figure 11.12):

stopping_condition(flow_state)

The stop condition is not satisfied, so we will perform one Grover iteration (r = 1):

qc = grover_circuit(prepare, oracle, 1)

The state at this step is shown in figure 11.13.
 Let’s take 100 simulated measurements of this circuit:

shots = 100
result = qc.measure(shots = shots)

Now we will check whether this outcome is higher than our previous best value (fig-
ure 11.14). Again, we look at the input–output pair that the most frequent outcome
corresponds to:

outcome = max(result['counts'].items(), key = lambda k: k[1])[0]

outcome_results = process_outcome(outcome, state)

YES

Construct/Update A

Choose r
Apply GRA

&
measure

Progress?

Stop?
Optimal
valueYES

NO

NO

Figure 11.12 If progress was not made, check the stop condition.
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In this example, we get the input–output pair (3,3). This is a higher value than the
previous best value, so the progress function returns True:

progress(outcome_results, flow_state)

As shown in the flow diagram in figure 11.15, if there is progress, we update the param-
eters of the encoded function and reconstruct the circuit to prepare the state. We will
use the update_circuit_params function to update the parameters of the circuit A:

def update_circuit_params(outcome_results, flow_state):
    circuit_params = flow_state['circuit_params']
    k, v = outcome_results
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Figure 11.13 The grid state representation of 
the quantum state encoding the function f(k) = 
–(k–3)2 + 3 and applying one Grover iteration

YES

Construct/Update A

Choose r
Apply GRA

&
measure

Progress?

Stop?
Optimal
valueYES

NO

NO

Figure 11.14 Check whether the result of this search is better than the result in the previous step (or the default 
value).
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    t = circuit_params['terms']
    t[0] = (t[0][0] - v - 1, [])
    print('\n------------------------')
    print('New free term:', t[0][0])

The update_circuit_params function shifts the outputs down by the new value
plus 1. In this case, all values are shifted down by 4 (because 3 + 1 = 4). We do this so
the new value becomes –1, and we continue the search for nonnegative values:

if progress(outcome_results, flow_state):
    update_circuit_params(outcome_results, flow_state)

We will use the build_circuit function to create a circuit with the updated parameters:

def build_circuit(flow_state):
    return build_polynomial_circuit(
        flow_state['circuit_params']['n_key'],
        flow_state['circuit_params']['n_value'],
        flow_state['circuit_params']['terms']
    )

Next we encode the updated function and repeat the iteration schedule, starting with
no Grover iterations:

prepare = build_circuit(flow_state)

oracle = oracle_match_0(n_key + n_value, n_key + n_value - 1)

qc = grover_circuit(prepare, oracle, 0)

The state at this step is shown in figure 11.16. Let’s simulate 100 measurements of
this state:

shots = 100
result = qc.measure(shots = shots)

YES

Construct/Update A

Choose r
Apply GRA

&
measure

Progress?

Stop?
Optimal
valueYES

NO

NO

Figure 11.15 Construct or update the circuit A. These parameters are updated based on the results of the 
previous search.
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Now let’s check whether we made progress toward finding the maximum:

outcome = max(result['counts'].items(), key = lambda k: k[1])[0]
outcome_results = process_outcome(outcome, state)

if progress(outcome_results, state):
    update_circuit_params(outcome_results, state['circuit_params'])

The progress function returns False, and we increase the failure count:

flow_state['failure_count'] += 1

The steps continue until the failure count triggers the stop condition (figure 11.17).
In this small example, by examining the values in the function table, we know that 3 is
the maximum value.
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Figure 11.16 The grid state representation 
of the quantum state encoding the function 
f(k) = –(k–3)2 + 3 shifted by –4

YES

Construct/Update A

Choose r
Apply GRA

&
measure

Progress?

Stop?
Optimal
valueYES

NO

NO

Figure 11.17 Once the stop condition is met, the optimal value is returned.
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The grover_optimizer function defined in listing 11.1 performs these steps for a
given problem. The function takes the following parameters:

 circuit_params—A dictionary with parameters that change from step to step
 build_circuit—A function that creates the circuit A
 oracle—A circuit for the oracle that tags desired outcomes (having nonnega-

tive integers in the value and weight registers)
 update_circuit_params—A function that adjusts the circuit parameters and

configuration
 progress—A function that checks whether the result of a search is better than

the previous best result
 process_outcome—A function that takes a binary outcome and decomposes it

into meaningful parts (e.g., the input–output pair or the selection, its value,
and its weight)

 stopping_condition—A function that determines whether the process should
stop

 schedule—A sequence with the number of Grover iterations to apply at each step
 starting_result—The starting input–output pair to which results will be

compared

def grover_optimizer(
    circuit_params,
    build_circuit,
    oracle,
    update_circuit_params,
    progress,
    process_outcome,
    stopping_condition=lambda flow_state: flow_state['failure_count'] > 7,
    schedule=[0, 1],
    starting_result=(None, -1)
):
    flow_state = {
        'last_good_outcome_results': starting_result,
        'failure_count': 0,
        'initial_circuit_params': copy.deepcopy(circuit_params),
        'circuit_params': circuit_params
    }

    shots = 100

    def update(outcome_results, flow_state):
        flow_state['last_good_outcome_results'] = outcome_results
        flow_state['failure_count'] = 0
        update_circuit_params(outcome_results, flow_state)

    done = False
    counter = 0

Listing 11.1 Function to implement the Grover optimizer
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    while not done:
        counter += 1
        for r in schedule:
            print('\niteration', r)
            function = build_circuit(flow_state)
            qc = grover_circuit(function, oracle, r)

            result = qc.measure(shots=shots)
            flow_state['last_run_result'] = result

            outcome = max(
                result['counts'].items(),
                key=lambda k: k[1]
            )[0]

            outcome_results = process_outcome(outcome, flow_state)

            if progress(outcome_results, flow_state):
                print('progress', outcome_results)
                update(outcome_results, flow_state)
                break
            else:
                flow_state['failure_count'] += 1
                print('failure', outcome_results)

                if stopping_condition(flow_state):
                    print(
                        '\nSTOPPING WITH OUTCOME RESULTS',
                        flow_state['last_good_outcome_results']
                    )
                    done = True
                    break

    return flow_state['last_good_outcome_results']

Let’s use this function to solve our example problem:

n_key = 3
n_value = 6

terms = [
    (8, [2]),
    (8, [1]),
    (5, [0]),
    (-16, [1, 2]),
    (-8, [0, 2]),
    (-4, [0, 1]),
    (-6, [])
]

grover_optimizer(
    {
        'n_key': n_key,
        'n_value': n_value,
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        'terms': terms
    },
    build_circuit,
    oracle,
    update_circuit_params,
    progress,
    process_outcome
)

The printed output is shown next. Unlike in the previous example, progress is made
in the first step. Seven more steps are performed without progress before the stop
condition is met and the optimal result is returned:

iteration 0
progress (2, 2)

------------------------
New free term: -9

iteration 0
failure (1, -1)

iteration 1
progress (3, 3)

------------------------
New free term: -13

iteration 0
failure (5, -1)

iteration 1
failure (2, 2)

iteration 0
failure (1, -1)

iteration 1
failure (6, -6)

iteration 0
failure (5, -1)

iteration 1
failure (3, 3)

iteration 0
failure (3, 3)

iteration 1
failure (4, 2)

STOPPING WITH OUTCOME RESULTS (3, 3)
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11.3 Solving the knapsack problem with a Grover optimizer
We will use the example knapsack problem that we looked at in chapters 2 and 10. As
a quick reminder, in our example problem, we have three items with the values and
weights shown in table 11.3, and a maximum weight capacity of 4. 

We can express the value and weight of each selection using linear functions of binary
variables

where k0, k1, and k2 are binary variables indicating whether an item is included in the
knapsack.

 In chapter 10, we showed how to encode item selections, their values, and their
weights. Now we have all the building blocks we need to use the Grover optimizer
method to solve the knapsack problem. Let’s look at the components of the Grover
optimizer used for this problem.

11.3.1 Preparing the state

We use three registers to encode each of the possible selections and the weight and
value of each selection (figure 11.18). Let’s define the size of each register:

n_key = 3
n_value = 3
n_weight = 4

Exercise 11.1
Use the grover_optimizer function defined in listing 11.1 to find the minimum of
the function f(k) = –(k–3)2 + 3, where 0 ≤ k < 8. 

Table 11.3 The items, weights, and values for the example knapsack problem

Item label Value Weight

0 2 ($2,000) 3

1 3 ($3,000) 2

2 1 ($1,000) 1

Selection WeightValue

Figure 11.18 Three registers encoding an 
item selection, its total value, and its total 
weight for solving the knapsack problem
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We can use a list of tuples to represent these value and weight functions:

v = [(2, [0]), (3, [1]), (1, [2])]

w = [(3, [0]), (2, [1]), (1, [2])]

The build_knapsack_circuit function creates a circuit with three registers (with the
given sizes n_key, n_value, and n_weight) and encodes the given value and weight
functions (v and w, respectively):

from algo import encode_term

def build_knapsack_circuit(n_key, n_value, n_weight, v, w):

    key = QuantumRegister(n_key)
    value = QuantumRegister(n_value)
    weight = QuantumRegister(n_weight)
    circuit = QuantumCircuit(key, value, weight)

    for i in range(len(key)):
        circuit.h(key[i])

    for i in range(len(value)):
        circuit.h(value[i])

    for i in range(len(weight)):
        circuit.h(weight[i])

    for (term, vars) in v:                             
        encode_term(term, vars, circuit, key, value)   

    circuit.iqft(value[::-1], swap=False)

    for (term, vars) in w:                               
        encode_term(term, vars, circuit, key, weight)    

    circuit.iqft(weight[::-1], swap=False)

    return circuit

Let’s create the starting circuit:

qc = build_knapsack_circuit(n_key, n_value, n_weight, v, w)

The resulting state is shown in figure 11.19. The outcomes corresponding to each pos-
sible selection have equal probability (and all other outcomes have a probability of 0). 

11.3.2 Encoding constraints

To encode the constraint that the weight of a selection is less than or equal to 4, we will
adjust the encoded weight function to w' = 4 – w so that the integer encoded in the
weight register will be nonnegative for selections that meet the weight requirement

Encodes the 
value function

Encodes the 
weight function
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(w' ≥ 0). This way, our oracle will tag selections with a total weight of 4 or less. We
adjust the terms using the following code:

w = [(3, [0]), (2, [1]), (1, [2])]
max_weight = 4

w_adjusted = [(max_weight, [])] + [(-item[0], item[1]) for item in w]

Similarly, we adjust the encoded value function. We can see that the most valuable
item has a value of 3, and its weight is less than the allowed capacity. This information
helps us restrict the search to selections that have a combined value of at least 3. We
will shift the values down by 3 by adjusting the value function (v' = v – 3) so that the
integer encoded in the value register for the desired selections will be nonnegative
(v' ≥ 0). We adjust the terms using the following code:

values = [2, 3, 1]
v = [(2, [0]), (3, [1]), (1, [2])]

v_adjusted = [(-max(values), [])] + v

NOTE The number of qubits in the key register is the number of items.
Because we know the maximum weight of desired selections, we can choose
the size of the weight register to accommodate this weight. How do we choose
the number of qubits for the value register? If the register is not large
enough, the integer encoded in the register will be the remainder of the divi-
sion of the value by 2n, where n is the number of qubits in the register. Fortu-
nately, we can detect if the register is not large enough, and we can increase
the number of qubits. For the small example in this chapter, we use registers
that are large enough to accommodate all integers that will be encoded at all
steps of the algorithm. In general, we might need to adjust the number of
qubits used to represent the adjusted weights and values.

Selection Value Weight Direction Magnitude Amplitude bar Probability

000 0 0 –0.00° 0.35 0.12

001 2 3 0.00° 0.35 0.12

010 3 2 –0.00° 0.35 0.12

011 5 5 0.00° 0.35 0.12

100 1 1 0.00° 0.35 0.12

101 3 4 –0.00° 0.35 0.12

110 4 3 –0.00° 0.35 0.12

111 6 6 0.00° 0.35 0.12

Figure 11.19 A quantum state after encoding the values and weights of each 
possible selection
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11.3.3 Defining the parameters of the Grover optimizer

We will use the grover_optimizer function defined in the previous section to imple-
ment the solution to this problem. To do that, we need to define the arguments that
will be passed to it. 

 Using the adjusted value and weight encoding, we can use an efficient oracle that
tags outcomes that have 0 as the first digit in both the value and weight registers. We can
use the function oracle_match_0_multi defined in chapter 10 to create this oracle:

from algo import oracle_match_0_multi

oracle = oracle_match_0_multi(
    n_key + n_value + n_weight,
    [
        n_key + n_value - 1,
        n_key + n_value + n_weight - 1
    ]
)

We will use the build_circuit function to create the circuit to encode the selections
and their corresponding values and weights:

def build_circuit(flow_state):
    return build_knapsack_circuit(
        flow_state['circuit_params']['n_key'],
        flow_state['circuit_params']['n_value'],
        flow_state['circuit_params']['n_weight'],
        flow_state['circuit_params']['v'],
        flow_state['circuit_params']['w']
    )

To interpret the measurement outcome at each step, we will use the process_outcome
function, which takes the binary outcome and returns the selection that the outcome
corresponds to and the weight and value of the selection:

def process_outcome(outcome, flow_state):
    n = (
        flow_state['circuit_params']['n_key'] +
        flow_state['circuit_params']['n_value'] +
        flow_state['circuit_params']['n_weight']
    )
    outcome_selection = padded_bin(n, outcome)[-n_key:]
    outcome_value = get_selection_value(outcome_selection, v)
    outcome_weight = get_selection_weight(outcome_selection, w)
    return outcome_selection, outcome_value, outcome_weight

To check whether there is progress, we will use this function:

def progress(results, flow_state):
    outcome_selection, outcome_value, outcome_weight = results
    min_value = flow_state['circuit_params']['min_value']
    return (outcome_value >= min_value) and (outcome_weight <= max_weight)
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The update_circuit_params function shifts the value function to search for selec-
tions with values higher than the current best selection at a given step, and the
action_on_progress function prints useful information about each step (the com-
plete definition can be found in the book’s code repository):

def update_circuit_params(outcome_results, flow_state):
    circuit_params = flow_state['circuit_params']
    outcome_selection, outcome_value, outcome_weight = outcome_results
    v = circuit_params['v']

    v[0] = (-outcome_value - 1, [])

    circuit_params['min_value'] = outcome_value + 1
    action_on_progress(flow_state)

Now we are ready to use the grover_optimizer function. Note that in the second
parameter, we include the minimum value to look for:

grover_optimizer(
    {
        'n_key': n_key,
        'n_value': n_value,
        'n_weight': n_weight,
        'v': v_adjusted,
        'w': w_adjusted,
        'min_value': min_value
    },
    build_circuit,
    oracle,
    update_circuit_params,
    progress,
    process_outcome,
    stopping_condition=lambda flow_state: flow_state['failure_count'] > 3
)

The implementation starts by looking for selections with a maximum weight of 4 and
a minimum value of 3 (min_value). When we don’t apply any iteration of the Grover
operator, we have an equal likelihood of measuring each of the possible selections. In
this particular run, we get '000':

iteration 0
failure ('000', 0, 0)

Next, one Grover iteration is applied (according to the schedule). The state prepared
at this step is shown in figure 11.20.

 In this particular run, we get the selection register outcome '010'. The value of this
selection is 3, and the weight is 2:

iteration 1
progress ('010', 3, 2)
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After this step, we try increasing the minimum value to see if we can find a solution
with a higher value than the best solution at this step. We increase the minimum value
from 3 to 4 and update the parameters of the circuit that prepares the state to be
searched. Now we apply Grover iterations according to the schedule and analyze the
results (figure 11.21):

Looking for values >=  {4}

iteration 0
failure ('010', 3, 2)

iteration 1
progress ('110', 4, 3)

Selection Value Weight Direction Magnitude Amplitude bar Probability

000 0 0 –0.00° 0.18 0.03

001 2 3 0.00° 0.18 0.03

010 3 2 180.00° 0.53 0.28

011 5 5 0.00° 0.18 0.03

100 1 1 –0.00° 0.18 0.03

101 3 4 180.00° 0.53 0.28

110 4 3 180.00° 0.53 0.28

111 6 6 0.00° 0.18 0.03

Figure 11.20 The selection register outcome probabilities after looking for 
selections with a maximum weight of 4 and a minimum value of 3

Selection Value Weight Direction Magnitude Amplitude bar Probability

000 0 0 180.00° 0.18 0.03

001 2 3 –180.00° 0.18 0.03

010 3 2 180.00° 0.18 0.03

011 5 5 –180.00° 0.18 0.03

100 1 1 –180.00° 0.18 0.03

101 3 4 –180.00° 0.18 0.03

110 4 3 180.00° 0.88 0.78

111 6 6 –180.00° 0.18 0.03

Figure 11.21 The selection register outcome probabilities after looking for 
selections with a maximum weight of 4 and a minimum value of 4
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We continue to perform more steps until the stop condition is satisfied:

Looking for values >=  {5}

iteration 0
failure ('111', 6, 6)

iteration 1
failure ('000', 0, 0)

iteration 0
failure ('010', 3, 2)

iteration 1
failure ('000', 0, 0)

STOPPING WITH OUTCOME RESULTS ('110', 4, 3)
('110', 4, 3)

Note that we can use a hybrid approach, where a value found with classical methods
can be used as the starting point for the Grover optimizer to find a better value. 

Summary
 Grover adaptive search can be used to solve optimization problems when the

number of good outcomes is unknown:
– It uses schedules to determine how many Grover iterations to try at each

step, such as random sequences or fixed patterns.
– It requires a stop condition, which can be based on the number of consecu-

tive failures to find better solutions.
– It can be used to build a Grover optimizer: a hybrid algorithm that dynami-

cally adjusts the number of iterations and the parameters of the circuit that
prepares the state to be searched to efficiently find optimal solutions.

 When searching for maximum or minimum values of a function using the Gro-
ver optimizer, the parameters of the encoded function are updated after each
successful measurement to restrict the search space to better solutions.

 The key to an efficient Grover optimizer is using an efficient underlying oracle.
For example, we can search for negative or nonnegative integers with oracles
using the Two’s Complement interpretation. 

Exercise 11.2
Pass a different schedule to grover_optimizer to solve the knapsack problem,
such as the schedule mentioned previously: [0, 0, 0, 1, 1, 0, 1, 1, 2, 1, 2, 3, 1, 4,
5, 1, 6, 2, 7, 9, 11, 13, 16, 5, 20, 24, 28, 34, 2, 41, 49, 4, 60].a

a Baritompa, William, et al. Grover’s quantum algorithm applied to global optimization. SIAM Journal 
on Optimization, 15(4): 1170–1184, 2005.



Conclusions and
outlook
This book is designed to be a foundational resource for quantum computing devel-
opers. With the knowledge you gained throughout the book, you are better
equipped to design and implement quantum solutions.

 In this chapter, we will review (and expand on) important concepts introduced
in the book. We will also briefly discuss some areas that are beyond the scope of this
book but are important to be aware of, such as encoding and optimizing polynomi-
als with noninteger coefficients and factorization using Shor’s algorithm.

This chapter covers
 Reviewing essential quantum computing 

concepts introduced throughout the book

 The importance of the butterfly computing 
pattern

 Running experiments on real quantum 
computers

 An overview of additional quantum solutions, 
including optimization problems and Shor’s 
algorithm
304
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12.1 Quantum concepts in review
Quantum computing can be used to solve specific problems in areas like truly random
sampling, optimization, and machine learning. Quantum approaches can speed up or
improve the quality of certain classical solutions, and quantum computing applica-
tions will likely be specialized computations used in conjunction with classical com-
puting. To become a successful adopter of quantum computing solutions, a strong
understanding of what quantum computers can and cannot do is necessary.

12.1.1 Quantum readiness

Both quantum hardware and quantum software are essential to unlock the full poten-
tial of quantum computing. Even before large-scale quantum hardware becomes avail-
able, we can proactively identify and analyze technical and business problems that
could benefit from a quantum approach. This strategy allows us to build a robust
foundation for future quantum applications and become “quantum ready.”

 The evolution of neural networks serves as an analogue for the progress of quan-
tum computing. In the early days of neural networks, research was primarily theoret-
ical due to the limited computational power that was available. Later advancements
in computer hardware enabled large-scale implementation, and those who were pre-
pared benefited greatly. Even though some aspects of deep learning are not fully
understood theoretically, they have still been successfully applied to real-world prob-
lems. Quantum computing is showing promise in specific areas, such as optimiza-
tion, and it will be beneficial to be quantum ready when quantum hardware is widely
accessible. 

12.1.2 Quantum advantage and its limitations

Throughout the book, we have discussed quantum parallelism and measurement as the
superpowers of quantum computing. Quantum parallelism can be thought of as instant
multiplication of matrices that have a specific structure. This structure imposes limitations
on the types of problems that can benefit from quantum parallelism. Quantum solutions
need to align with this structure. 

 In chapter 7, we saw how quantum parallelism makes quantum Fourier trans-
forms (QFTs) more efficient than their classical counterpart. Additionally, we saw
how quantum parallelism facilitates the efficient encoding of geometric sequence
states, where each qubit contributes a rotation, and rotations interfere to create the
final result. 

 Quantum measurement enables efficient sampling from the probability distribu-
tions defined by quantum states. The way we interpret measurement counts depends
on the problem to be solved. For example, in Grover’s algorithm, we amplify the mag-
nitudes of desired outcomes and therefore their probability of being measured so that
we can find the desired outcomes upon measurement.

 In chapter 1, we discussed three main patterns for quantum computations:
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 Sampling from probability distributions—Throughout the book, we implemented use-
ful distributions (binomial, raised cosine, normal approximation) for truly ran-
dom sampling.

 Searching for specific outcomes—We learned how to implement a quantum search
and looked at several examples, including the knapsack problem and finding
the minima or maxima of a given function.

 Estimating the probability of specific outcomes—We did this in chapter 9 using quan-
tum amplitude estimation.

12.2 Building quantum software and running on real 
quantum computers
This book is meant to provide you with the necessary knowledge to understand and
adopt various quantum computing tools. We provide tools to seamlessly convert the
simulator code to Qiskit to run on quantum hardware. The building blocks of our sim-
ulator can easily be translated into other languages; for example, a JavaScript version
of our quantum simulator is included in the book’s repository. 

12.2.1 The importance of a fast, flexible quantum simulator

The core concepts of quantum computing are relatively easy to represent with classical
code, as we have shown in this book. It only takes a couple hundred lines of code to cre-
ate a functioning quantum computing simulator. This is similar to how students of deep
learning start by implementing neural networks from scratch, which is one of the best
ways to learn. However, quantum computing simulators are used for more than learning
purposes. To experiment with existing algorithms and create new ones, it is essential to
have a flexible simulator. 

 Simulating quantum circuits classically is computationally expensive. Often, quan-
tum computations are simulated with large matrix operations. In some cases, we want
to take shortcuts to cut down on the computational complexity of simulating specific
quantum operations.

 For example, a (phase) oracle multiplies the amplitudes of desired outcomes by –1.
This is straightforward to implement in a simulator without using quantum gates. Addi-
tionally, the quantum Fourier transform can be implemented in a simulator using the
fast Fourier transform (FFT) instead of quantum gates. 

12.2.2 Source-level compatibility between Hume and Qiskit

Throughout the book, we have built a quantum computing simulator called Hume.
The complete implementation of Hume can be found in the src/hume directory in
the book’s companion repository. 

 The syntax for writing quantum circuits using Hume closely matches that of Qiskit.
This is intentional, as Qiskit is among the most popular quantum computing SDKs. Our
implementation is simpler than Qiskit’s for ease of understanding and is designed for
better performance.
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 We made some choices that differ from Qiskit’s design. For example, we added
methods for the QFT and inverse QFT (IQFT) in the QuantumCircuit class. Addi-
tionally, we use the method c_append to append a circuit to a register with con-
trolled transformations. To achieve source-level compatibility between Hume and
Qiskit, we enhanced Qiskit’s QuantumCircuit class with the same functionality using
the following code, which you can find in the hume/qiskit/__init__.py file in the book’s
companion repository:

from collections import Counter
from random import choices

from qiskit import QuantumCircuit
from qiskit.circuit.add_control import add_control
from qiskit.circuit.library import QFT
from qiskit.quantum_info import Statevector

def run(self):
    return Statevector(self).data

def c_append(self, U, c, q):
    cU = add_control(U.to_instruction(), 1, '', 0)
    self.append(cU, [c] + [qb for qb in q])

def qft(self, targets, swap=True):
    qft = QFT(
        num_qubits=len(targets),
        do_swaps=swap,
        inverse=False
    )
    self.append(qft, qargs=targets)

def iqft(self, targets, swap=True):
    iqft = QFT(num_qubits=len(targets), do_swaps=swap, inverse=True)
    self.append(iqft, qargs=targets if swap else targets[::-1])

def measure(self, shots=0):
    state = self.run()
    samples = choices(
        range(len(state)),
        [abs(state[k]) ** 2 for k in range(len(state))],
        k=shots)
    counts = {}
    for (k, v) in Counter(samples).items():
        counts[k] = v
    return {'state vector': state, 'counts': counts}

setattr(QuantumCircuit, 'run', run)
setattr(QuantumCircuit, 'c_append', c_append)
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setattr(QuantumCircuit, 'qft', qft)
setattr(QuantumCircuit, 'iqft', iqft)
setattr(QuantumCircuit, 'measure', measure)

Now we can run the same code using Hume or Qiskit. You can find an example of
doing this in the chapter code notebook.

SWITCHING BETWEEN HUME AND QISKIT

We rely on a configuration file to switch between Hume or Qiskit. This configuration
file can be found in src/config.py. The default is to use Hume as the simulator:

SIMULATOR = 'hume'
# SIMULATOR = 'qiskit'

In hume/__init__.py, we conditionally import the desired QuantumRegister and
QuantumCircuit implementations from the Hume source code or from Qiskit,
according to the chosen simulator:

from config import SIMULATOR

if SIMULATOR == 'qiskit':
    from qiskit import QuantumRegister, QuantumCircuit
elif SIMULATOR == 'hume':
    from hume.simulator.circuit import QuantumCircuit, QuantumRegister

The following code will run using both Hume and Qiskit, with a simple configuration
change:

from hume import QuantumRegister, QuantumCircuit

q = QuantumRegister(3)
qc = QuantumCircuit(q)

qc.h(q[0])
qc.h(q[1])
qc.mcx([q[0], q[1]], q[2])

state = qc.run()

12.2.3 Running on real quantum hardware

We also created tools to seamlessly convert Hume circuits to Qiskit circuits without
having to change the configuration from Hume to Qiskit. This makes it simple to run
examples from the book on IBM quantum backends, both simulators and real quan-
tum computers. For example, to convert a Hume circuit to a Qiskit circuit, we use the
hume_to_qiskit function:

qiskit_circuit = hume_to_qiskit(hume_circuit)
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The function returns a Qiskit QuantumCircuit instance. We also include a function to
run a circuit using Qiskit’s state vector simulator. These tools allow you to run code
written in Hume on real quantum hardware. 

AN EXAMPLE OF RUNNING ON A REAL QUANTUM COMPUTER

At the time of publication of this book, anyone can create an account with IBM Quan-
tum and run experiments on real quantum hardware via the IBM Quantum Platform
Open Plan.

NOTE Qiskit and the associated IBM Quantum products are continuously
evolving; the offerings used in this example may have changed or may no lon-
ger be available in the future. Please refer to the book’s repository for
updates.

We have included a notebook in the book’s repository with instructions for running
the code from the book on IBM’s quantum computers. The notebook uses the Qiskit
Runtime Sampler Primitive, so in addition to Qiskit, we need to install the qiskit-
ibm-runtime package and import the following:

from qiskit_ibm_runtime import QiskitRuntimeService, Sampler
from qiskit.compiler import transpile
from qiskit.visualization import plot_histogram

First, insert your IBM Quantum API key and authenticate to the service. Note that this
uses the default instance for Open Plan users. If you are using a different plan (i.e., pay-
as-you-go), you can change your instance using the instance parameter:

QiskitRuntimeService.save_account(
    channel="ibm_quantum",
    token="<MY_IBM_QUANTUM_TOKEN>",
    instance="ibm-q/open/main",
    overwrite=True
)

Now initialize the service:

service = QiskitRuntimeService()

You can view the systems available with the following code:

service.backends()

Let’s build a small example circuit using Hume:

from hume.simulator.circuit import QuantumRegister, QuantumCircuit

q = QuantumRegister(3)
qc = QuantumCircuit(q)
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qc.h(q[0])
qc.h(q[1])
qc.mcx([q[0], q[1]], q[2])

We use Hume’s Qiskit utility function hume_to_qiskit to convert the Hume circuit
instance to a Qiskit circuit instance:

from hume.qiskit.util import hume_to_qiskit

qc_qiskit = hume_to_qiskit(qc.regs, qc.transformations)

We must add measurement to the circuit. We can use the measure_all method to
measure all the qubits in the circuit:

qc_qiskit.measure_all()

We can also visualize the circuit using Qiskit’s draw() method:

qc_qiskit.draw()

The output is shown in figure 12.1.

Now we will choose a backend on which to run our experiment. In this example, we
use the least busy backend:

backend = service.least_busy(operational=True, simulator=False)
print(backend.name)

When this example was run, the least busy backend was

ibm_sherbrooke

Let’s create a sampler object:

sampler = Sampler(backend=backend)

Next we do a basic transpilation (no optimization):

qc_transpiled = transpile(qc_qiskit, backend)

Figure 12.1 Circuit diagram created 
using Qiskit’s draw() method
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Finally, we submit a job to the chosen backend. In this example, we chose to run
1,000 shots:

job = sampler.run(qc_transpiled, shots = 1000)

Let’s look at the results:

result = job.result()

We will use Qiskit’s built-in visualization function plot_histogram to visualize the
results. We plot the distribution of results, or “quasi-probabilities”:

quasi_probs = result.quasi_dists

plot_histogram(quasi_probs, figsize=(9,5))

The histogram created when this example was run is shown in figure 12.2. 

12.2.4 Quantum assistant

Practice and repetition are essential to learning. To make this process as intuitive and
quick as possible, we have created several tools for you to use that complement the
material in this book. One such tool is a voice-controlled AI assistant that uses the
code implemented in the book. This assistant can help perform several tasks, includ-
ing circuit building. It can also demonstrate solutions implemented in the book. 

NOTE The example below is captured at the time this book was completed.
AI tools are rapidly evolving, and the assistant will likely be updated, but the
simulator will stay the same.

Figure 12.2 Histogram of the quasi-probability distribution
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Let’s ask it to solve the example knapsack problem. We start by saying that we want to
solve a knapsack problem with three items, and we specify the weights and values of
those items, as you can see in the recognized command in figure 12.3. The output
from the assistant is the optimal selection (figure 12.4).

We can also ask it to show all the steps it performed to solve the problem. It will show
state table visualizations, along with more details about the computation. We encour-
age you to explore the assistant’s capabilities on your own and use them in whatever
way best supports your learning. 

12.3 Revisiting quantum gates and the butterfly pattern
A quantum computation consists of elementary instructions (single-qubit gates) that
are applied to specific qubits in a specific order. It is essential to understand how single-
qubit gates transform a quantum state. 

 A single-qubit gate recombines pairs of amplitudes determined by the target and
control qubits according to the specific gate formula. That specific gate formula is
defined by a two-by-two (unitary) matrix. Controlled transformations have one or
more control qubits in addition to a target qubit, which reduce the numbers of pairs
that are recombined.

 The recombination of amplitudes can be represented with butterfly diagrams,
which also happen to be used to visualize the steps of the classical FFT algorithm (see
figure 12.5). Quantum parallelism allows any number of these pair-wise operations to
be performed simultaneously.

Figure 12.3 Asking the assistant to solve the example knapsack problem

Figure 12.4 The output is the optimal solution.
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12.3.1 Another look at single-qubit gates and the butterfly pattern

Given a quantum system with n ≥ 1 qubits and a target qubit t, where 1 ≤ t ≤ n, and a
single-qubit gate represented by a two-by-two (unitary) matrix 

the effect of the gate on the state of the quantum system can be described as follows.
First we identify the pairs of amplitudes to be recombined based on the target qubit.
In the following code, we create a two-row matrix with the amplitudes of each pair:

import numpy as np

def get_two_row_matrix_from_state(state, t):
    stride = 2**t

    chunks = np.array_split(state, int(len(state)/stride))
    evens = np.concatenate(chunks[0::2])
    odds = np.concatenate(chunks[1::2])

    return np.stack((evens, odds))

If we denote this matrix by At, the effect of the gate represented by U can be described by

Then we can use the following function to assemble the quantum state from the matrix:

def get_state_from_two_row_matrix(matrix_state, t):
    chunk_size = int(matrix_state.shape[1] / 2**t)

    chunks_0 = np.array_split(matrix_state[0], chunk_size)
    chunks_1 = np.array_split(matrix_state[1], chunk_size)
    return np.hstack((chunks_0, chunks_1)).flatten()
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Figure 12.5 Butterfly diagrams for a three-qubit system and targets 0, 1, and 2
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For a unitary matrix U of size 2m-by-2m that is applied to m > 0 target qubits, the conver-
sion functions are

def get_matrix_state(state, t, m):
    n = int(np.log2(len(state)))
    o_dim = 2**(n-m)
    u_dim = 2**m
    stride = 2**t

    matrix_state = np.zeros((u_dim, o_dim), dtype=complex)

    for remainder in range(stride):
        for idx in range(u_dim):
            matrix_state[idx, remainder::stride] = state[
                remainder + idx * stride::u_dim*stride
            ]

    return matrix_state

def get_state_from_matrix(matrix_state, t, m):
    n = int(np.log2(matrix_state.shape[0] * matrix_state.shape[1]))

    u_dim = 2**m
    stride = 2**t

    state = np.zeros(2**n, dtype=complex)

    for remainder in range(stride):
        for idx in range(u_dim):
            state[idx * stride + remainder::u_dim*stride] = matrix_state[
                idx,
                remainder::stride
            ]

    return state

Let’s use these functions to simulate applying a unitary transformation (represented by
a four-by-four unitary matrix) of a state a randomly generated state with n = 3 qubits:

from hume.utils.common import generate_state, print_state_table
from hume.utils.matrix import rvs

n = 3
t = 1
m = 2

state = generate_state(n)

U = rvs(2**m)

matrix = get_matrix_state(state.copy(), t, m)
s1 = get_state_from_matrix(U@matrix, t, m)
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Now let’s apply the same transformation to the same state using our QuantumCircuit
class:

from hume.simulator.circuit import QuantumRegister
from hume.simulator.circuit import QuantumCircuit

q = QuantumRegister(3)
qc = QuantumCircuit(q)
qc.initialize(state.copy())
qc.unitary(U, t)

s2 = qc.run()

Finally, we can check that the resulting states are equivalent:

assert all_close(s1, s2)

12.4 Quantum states as an image
Throughout the book, we illustrated amplitudes using colored bars or pixels. The
direction (phase) of a complex number determines the hue of the color, and the mag-
nitude determines the length of the bar or the intensity of the pixel. 

 If a circuit consists of two registers of qubits as in the function-encoding case, the
quantum state resulting from running the circuit can be visualized as a table or a
grid state (like those in chapters 10 and 11). Similarly, we can visualize any quantum
state as an array of pixels like those in figure 12.6. Each pixel corresponds to an out-
come, and the color of the pixel is determined by the amplitude corresponding to
that outcome.

We can rearrange the one-dimensional array as a two-dimensional one by splitting it
into multiple rows. This is similar to the grid state used to visualize more than one reg-
ister of qubits. We partition the qubits into a prefix and a suffix. Figure 12.7 shows two-
dimensional versions of the previous three-qubit and four-qubit states.

000 001 010 011 100 101 110 111

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Figure 12.6 A three-qubit quantum state (top) and a four-qubit quantum state (bottom) illustrated 
as arrays of pixels
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The effect of applying a gate to a state represented as an image is the recombination
of pairs of columns (if the target qubit is in the prefix) or rows (if the target qubit is
in the suffix). We illustrate examples of transformations on a seven-qubit quantum state
divided into a three-qubit suffix and a four-qubit prefix in figure 12.8. For simplicity,

00 01 10

0

1

00

00

01 10

01

10

Figure 12.7 A three-qubit quantum state (top) and 
a four-qubit quantum state (bottom) illustrated as 
two-dimensional arrays of pixels

Figure 12.8 Visualizations of quantum transformations on different target qubits
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we use the X gate applied to each target qubit in the suffix; this is simple to visualize
because it has the effect of swapping the rows.

 Here is how we can formulate the four essential quantum properties of a qubit sys-
tem using the image representation:

 Quantum state—A quantum state is visualized as an (intensity-normalized) image
with dimensions that are powers of 2.

 System composition—Adding a qubit doubles the number of columns or rows
(we can choose the prefix and suffix in such a way that the image is closer to a
square).

 State evolution—A quantum state can be changed by using a 2×2 gate to recom-
bine columns or rows, depending on the target qubit. The recombination fol-
lows complex number addition and multiplication translated to colors.

 Quantum measurement—Measuring the state reveals the coordinates of a pixel
and nothing else. The probability of a pixel being measured is the square of its
intensity.

12.4.1 Visualizing quantum state evolution

Custom visualizations are easier to create when you have full control over your simula-
tor. For example, we can implement a version of running a quantum circuit that yields
all the quantum transformations applied to the initial quantum state and the evolu-
tion of the state after each transformation. We use the run_and_yield method of our
QuantumCircuit class:

def run_and_yield(self):
    yield None, self.state
    for tr in self.transformations:
        self.apply_transformation(tr)
        yield tr, self.state
    self.transformations = []

We can use this method to visualize quantum state evolution. For example, we can use
the following code to visualize each step of a quantum computation using pixel grid
visualizations, shown in figure 12.9:

transformations = qc.run_and_yield()
for idx, (tr, state) in enumerate(transformations):
    # save the state as an image 

We can also capture a quantum state evolution as a video. We have included such a
video in the companion repository; the screenshots shown in figure 12.9 are reminis-
cent of the changes of 0s and 1s from the movie The Matrix. The state of a quantum sys-
tem may be thought of as a “quantum matrix,” where complex numbers (represented as
color pixels here) change with every quantum instruction. The 0s and 1s are only the
result of quantum measurement.
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12.5 Combinatorial optimization problems
We learned how to encode polynomials of binary variables and optimize them
according to constraints encoded in registers. The formal name of this technique is
constrained polynomial binary optimization (CPBO). In particular, we can solve prob-
lems that fall under the category of quadratic unconstrained binary optimization (QUBO).
The optimization function in such problems is quadratic, meaning each term con-
tains at most two binary variables. The general form of such a function is 

where n > 0 is the number of binary variables and cj and cjl are real numbers, for
0 ≤ j < n and 0 ≤ j < l < n.

 We have only looked at one optimization method, Grover optimizer, but there are
other methods you can study after reading this book. The quantum approximate opti-
mization algorithm (QAOA) is a physics-inspired hybrid algorithm that is currently
popular in the quantum computing community. It requires understanding concepts
like the Hamiltonian of a system, which we will not discuss here. QAOA circuits
require fewer gates than Grover optimizer circuits, but more classical processing is
needed between successive quantum runs. 

12.5.1 Encoding polynomials with noninteger coefficients

Even though we have been using polynomial functions with integer coefficients in our
optimization examples, the polynomial encoding method can handle noninteger coeffi-
cients. Instead of a single value, each input will have a corresponding discrete-sinc

Figure 12.9 Pixel grid visualizations of selected intermediate steps of a simulated quantum computation
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distribution encoding its corresponding output. Let’s look at the concrete example of
the function 

defined for 0 ≤ k < 4. The corresponding function table is shown in table 12.1.

The quantum state encoding its inputs and outputs is illustrated in figure 12.10. The
principles we learned in chapter 11 can also be applied to optimizing polynomials of
binary variables with noninteger coefficients. 

Table 12.1 The function table for the function f(k) = 0.4k2 – 2.3 with 0 ≤ k < 4

k f(k) = 0.4k2 – 2.3

0 –2.3

1 –1.9

2 –0.7

3 1.3

0 = 00 1 = 01 2 = 10

5 = 0101

4 = 0100

2 = 0010

1 = 0001

0 = 0000

–6 = 1010

–7 = 1001

–8 = 1000 Figure 12.10 Quantum state encoding the 
function f(k) = 0.4k2 – 2.3 for 0 ≤ k < 4



320 CHAPTER 12 Conclusions and outlook
12.5.2 Shor’s factorization algorithm

Shor’s algorithm challenges the security of RSA encryption, which is a widely used method
for securely transmitting data over the internet. Developed by the mathematician Peter
Shor in 1994, this algorithm efficiently solves the problem of integer factorization—a task
that is extremely difficult for classical computers. Specifically, RSA encryption relies on the
computational difficulty of factoring a large integer that is the product of two prime num-
bers. The security of RSA is based on the premise that although multiplying two large
primes is easy, reversing the process (i.e., determining the original prime factors) is com-
putationally infeasible for classical computers. However, Shor’s algorithm can perform
this factorization exponentially faster than the best-known classical algorithms. 

 Shor’s algorithm has a structure similar to the one we used to encode and search for
values of polynomial functions. In Shor’s algorithm, we encode an exponential function
of the form

where a is a chosen integer and N is the number to be factored.
 Shor’s algorithm works by finding the period of the encoded function. This is similar

to how we encoded periodic signals (complex sinusoids) before applying the IQFT to
find the encoded frequency value. The structure of the circuit used by Shor’s algo-
rithm is very similar to the polynomial function-encoding algorithm introduced in
chapter 10. As you can see in the circuit diagram in figure 12.11, we use two registers,
apply Hadamard gates to the first register, encode the given exponential function

n-qubit
register A

m-qubit
register B

Figure 12.11 High-level view of the Shor’s algorithm circuit diagram
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using both registers (operator U in the circuit diagram), and then apply the IQFT to
the first register. 

Summary
 The book’s code repository contains tools to seamlessly convert Hume circuits

to Qiskit circuits. This makes it easy to run code from the book using IBM quan-
tum backends, both simulators and real quantum computers.

 At the most basic level, the state of a qubit system changes according to a butter-
fly pattern, a pattern that occurs in several other classical computing contexts.

 Large unitary matrices are useful for theoretical research, but for practical quan-
tum computing, developers need to understand elementary quantum gates.

 The state of a qubit system can be thought of as an image whose pixels change
by recombining rows or columns of the image.

 There is a lot more to be learned about quantum computing. This book has laid
the foundation for you to continue your learning journey into more advanced
topics.
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Math refresher

This appendix contains a quick review of binary strings and complex numbers.

A.1 Diving deeper into binary strings
The only information we can get from a quantum computation is the measurement
outcome. We represent this outcome as a binary string. Therefore, to interpret the
results of a quantum computation, we need to be able to interpret binary strings. 

 Typically, the information processed by a classical computer uses a binary sys-
tem, so you may already be familiar with interpretations of binary strings. Of course,
present-day programmers rarely need to interact with binary code. In contrast, in
the current stage of quantum computing, we have to be able to think in terms of
binary representations of variables to implement quantum programs. In the follow-
ing sections, we will review a few relevant features of binary strings.

A.1.1 Converting between binary and decimal values

Most of the time, we work with integers in their decimal (base 10) form. The deci-
mal form of an integer is a sequence of digits, where each digit is one of 10 possible
values (0 through 9). The position of each digit then tells us which power of 10 the
value represents. As we move from right to left, the power of 10 increases. For
example, in a three-digit positive integer, the leftmost digit represents how many
hundreds (102) are in the integer, the middle digit how many tens (101), and the
rightmost is how many ones (100), as shown in figure A.1. 

 In general, we take each digit, multiply its value by its corresponding power, and
add it to a total. In the decimal form of 104, we add 1 hundred, 0 tens, and 4 ones.
Therefore, a 0 digit represents a lack of that power. If we represent the integer 8 in
322
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its decimal form with three digits, it is 008: we have no hundreds or tens to contribute
to the total, which means their digits are simply 0.

 Similarly, the binary (base 2) form of an integer is expressed using two digits: 0
and 1. Each digit shows whether the corresponding power of 2 is present, again
increasing in power from right to left.

 To convert a binary string to its decimal form, we consider each digit from the
right to the left. Each digit represents a power of 2, starting from 20 for the rightmost
digit and increasing with each digit to the left. If we move one digit to the left, we find
the value corresponding to 21, and so on. In the general case, we multiply the value of
each digit by its power and add this to the running total for the final decimal value.
Because binary strings are made up of only 0s and 1s, this is simple: we either add a
power of 2 or we don’t. Figure A.2 shows an example of finding the decimal value
from the binary form of 104. 

A given number of digits can represent a limited range of integers in binary form. Fig-
ure A.3 shows the decimal values of binary strings of lengths one, two, and three.

 Two binary digits can represent the (base 10) integers 0 to 3 in binary form. The
following Python code produces the binary form of these integers:

[bin(k)[2:].zfill(2) for k in range(2**2)]

104

Tens

OnesHundreds
Figure A.1 The number 104 written in 
decimal (base 10) form

Decimal (base 10) form

Position

Binary digit

2 1 0

401

10^2 × 1

10^1 × 0

10^0 × 4

104

Binary (base 2) form

Position

Binary digit

2 1 03456

1 1 1 0000

2^6 × 1

2^5 × 1

2^4 × 0

104

= 100

= 0

= 4

= 64

= 32

= 0

2^3 × 1 = 8

2^2 × 0 = 0

2^1 × 0 = 0

2^0 × 0 = 0

Figure A.2 Example of representing the same number in decimal form and binary form
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The output is

['00', '01', '10', '11']

Three binary digits can represent the (base 10) integers 0 to 7 in binary form:

[bin(k)[2:].zfill(3) for k in range(2**3)]

The output is

['000', '001', '010', '011', '100', '101', '110', '111']

A.1.2 Adding a digit to a binary string

We know that there are 2n binary strings of length n. That means if we add one more
digit, we will end up with double the number of possible strings. Each time we add a
digit to the string, we can use another power of 2, as shown in figure A.4. 

Binary form Decimal form

0

1

0

1

One-qubit outcomes Two-qubit outcomes

Binary form Decimal form

00

01

0

1

10

11

2

3

Three-qubit outcomes

Binary form Decimal form

000

001

0

1

010

011

2

3

100

101

110

111

4

5

6

7

Figure A.3 The decimal value of binary strings of length one, two, and three

0

1

2^0 × 0 = 0

2^0 × 1  = 1

0

2^0 × 0 = 0

0

2^1 × 0 = 0

0
1

2^0 × 1 = 1

0

2^1 × 0 = 0

1
0

2^0 × 0 = 0

1

2^1 × 1 = 2

2
1

2^0 × 1 = 1

2^1 × 1 = 2

3

1

0 01

Figure A.4 Adding a digit to the binary 
string means two times as many values 
can be represented.
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Similarly, because we have four strings of length 2, we will have eight strings of length
3. Four of them begin with 0, and the other four begin with 1, as shown in figure A.5. 

A.1.3 Visualizing binary strings with binary trees

Binary trees are another way to represent a series of binary choices. Figure A.6
shows the binary trees corresponding to strings of one, two, and three digits. Each
level, or step, gives us the option to go up (adding digit 0) or down (adding digit 1).
When we choose a sequence of up or down moves as a path in the tree, it is equiva-
lent to building a binary string. Adding a step is the same as adding a digit to the
binary string. 

A.1.4 Joining and splitting binary strings with prefixes and suffixes

We can create a new binary string by joining (concatenating) two binary strings. The
length of the new string will be the sum of the lengths of the two strings. We can also
do this with their corresponding binary trees: we add a copy of the second binary tree
to each leaf of the first, producing a new binary tree with a total number of levels
equal to the sum of the two original binary trees. The number of leaves of the new
tree is equal to the product of the number of leaves of the two trees. 

Prepend 0

Prepend 1
Figure A.5 Building three-digit 
binary strings by prepending 0 
and 1 to the two-digit strings

0

1

00

01

10

11

000

001

010

011

100

101

110

111

Figure A.6 Binary tree view 
of binary strings of lengths 
one, two, and three
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 We can also split a binary string into two parts: a prefix and a suffix. In a binary
tree, this corresponds to dividing the path from the root to a leaf into two sections at a
certain level. 

A.1.5 Encoding negative integers

Now we know how to represent nonnegative integers in binary form. However,
depending on the problem, we will need to represent negative numbers. To do this,
we will take the set of possible binary strings of a given length and divide it in two. The
first half will represent nonnegative integers, and the second half will represent nega-
tive integers. 

 Let’s use an example to understand how this works. Assume we have three binary
digits. We know that there are 23 possible binary strings of length 3. So, we can repre-
sent the following range of eight nonnegative integers:

n = 3
decimal_range = [k for k in range(2**n)]
print(decimal_range)

The output is

[0, 1, 2, 3, 4, 5, 6, 7]

We can represent the same range in binary form:

binary_range = [bin(k)[2:].zfill(3) for k in range(2**n)]
print(binary_range)

The output is

['000', '001', '010', '011', '100', '101', '110', '111']

Alternatively, we can map the range to have negative numbers in the second half,
starting with –1 at the end and going backward to the half-point. Note that the second
half of the binary range starts with the digit 1:

[k for k in range(2**(n-1))] + [k-2**n for k in range(2**(n-1), 2**n)]

The output is

[0, 1, 2, 3, -4, -3, -2, -1]

The second half of the list entries are the original values minus the size of the range.
For example, we subtract 8, the size of the range, from 4, the original value of the
string, to get –4. Another way to look at this is to imagine that we’re counting our posi-
tion from the end of the list rather than the beginning. In fact, Python lists allow neg-
ative indexing that works exactly this way (i.e., index –1 is the last value in the list).
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 We can visualize the numbers 0 through 7 as binary strings in a circle. Let’s wrap
the list clockwise around a circle, as shown in figure A.7. The numbers whose binary
representation starts with 0 are in the top half of the circle, and those that start with 1
are in the bottom half.

We will see that this encoding appears naturally when using quantum operations. We
are already used to using both negative and nonnegative angles on the unit circle (i.e.,
7 2π/8 is equivalent to –2π/8). This technique is known as Two’s Complement in com-
puter science. 

A.2 Using complex numbers to represent amplitudes
The state of a quantum system consists of amplitudes that can be visualized as arrows
that exist in two dimensions. There is one amplitude for each possible outcome. An
amplitude is like a force that determines the probability of its corresponding outcome. 

 From a computational point of view, complex numbers are a very convenient way
to represent amplitudes. Before we discuss them, let’s look at the vector, or arrow,

Two’s Complement: Why the name?
Computing professionals are used to describing the Two’s Complement technique in
terms of its mechanical application inside a computer. The procedure to get the neg-
ative representation of a number can be summarized as follows:

1 Write the number’s absolute value in binary form.
2 Flip each bit to get the complement of each digit (changing all 0s to 1s and all

1s to 0s).
3 Add 1 to the result.

We do not need to use this complex procedure. The description in this section is all
we need to encode negative numbers. 

7 = 111

6 = 1105 = 101

4 = 100

3 = 011

2 = 010 1 = 001

0 = 000

-1 = 111

-2 = 110-3 = 101

-4 = 100

3 = 011

2 = 010 1 = 001

0 = 000

Figure A.7 Binary strings of length three for encoding nonnegatives (left) and negatives (right)
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representation of amplitudes. Later in the section, we’ll provide a brief overview of
complex numbers.

NOTE An amplitude is like a force that determines the probability of its cor-
responding outcome.

A.2.1 Amplitudes as arrows inside the unit circle

Vectors can show the magnitude (strength) and direction of a force, as shown in fig-
ure A.8. The sum of the squared lengths (magnitudes) of all the amplitudes of a state
must be equal to 1. This means any single amplitude arrow can be no longer than 1. 

The unit circle is a circle with a radius of 1, centered at the point where the x axis and
y axis meet (the origin). If we position the start of an amplitude vector at the origin of
the plane, the vector will be inside the unit circle, as shown in figure A.9. Also,
because we know where the vector starts, we don’t need to mark its end with an arrow.
Brian Cox, the well-known physicist, sometimes refers to amplitudes as “clocks”; when
we visualize an amplitude inside a unit circle, it is easy to see why. 

A.2.2 Amplitudes as complex numbers: The algebraic form

The coordinates (x, y) of the endpoint of a vector that starts at the origin define a com-
plex numberz = x + iy, as shown in figure A.10. Here, i is the imaginary unit, a number
with the special property that its square is –1: i 2 = –1. In this form, called algebraic, x is
the real part of z, and y is the imaginary part. 

Magnitude

Dire
cti

on

Figure A.8 A vector defined by 
a magnitude and a direction

Figure A.9 A “clock” representation 
of a quantum amplitude inside the 
unit circle
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Using the algebraic form of complex numbers, we can add and multiply amplitudes in
a straightforward way. Take two amplitudes z0 = x0 + iy0 and z1 = x1 + iy1. To find their
sum, we can add them as complex numbers:

To compute their product, we multiply them

taking into account that i 2 = 1.
 Python represents the imaginary unit, i, in a complex number with the symbol j.

The following creates a complex number in Python:

z = 0.2 + 0.3j
print(type(z))

The output is

<class 'complex'>

We can get the real parts with the built-in real and imag attributes:

print(z.real, z.imag)

The output is

0.2 0.3

The magnitude of a complex number in algebraic form, z = x + iy, is . We
can get the magnitude (absolute value) of the complex number defined previously
using the abs function:

abs(z)

z x iy= +
x

y

Figure A.10 The (x, y) coordinates of the 
endpoint of a vector define a complex number 
z = x + iy.
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The output is

0.36055512754639896

A.2.3 Amplitudes as complex numbers: The trigonometric (polar) form

Instead of using the coordinates of a vector’s endpoint, we can represent the vector by
its magnitude and direction. In geometric terms, the magnitude is the distance from
the origin to the point, denoted by r. The direction is the angle from the x axis,
denoted by θ. We can restrict θ to the interval [0°, 360°] or [–180°, 180°]. 

 When dealing with direction, we need to understand some basic trigonometry
concepts.

Given the magnitude r and direction θ of an amplitude, we can calculate the coordi-
nates of its endpoint by using the expressions x = r cosθ and y = r sinθ. The corre-
sponding complex number can be written as z = r(cosθ + i sinθ). This alternative
representation is the trigonometric, or polar, form of complex numbers. 

Revisiting trigonometry basics
A point on the unit circle corresponds to an angle θ between 0 and 360 degrees. We
measure the angle from the positive side of the x axis in a counterclockwise direction.
We can also use negative angles measured in a clockwise direction. This point’s x
coordinate is the cosine of the angle (cosθ ), and its y coordinate is the sine of the
angle (sinθ ).

This is how the cosine of the acute angles of a right triangle is defined: the ratio of
the side next to the angle over the hypotenuse. The sine is the ratio of the side oppo-
site the angle over the hypotenuse.

A point on the unit circle 
and its coordinates

(cos , sin )θ θ

1

θ cos( )θ

sin( )θ
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A.2.4 Conjugates of complex numbers

The conjugate of a complex number is the number you get when you change the sign
of the imaginary part. For example, a complex number z = x + iy has a conjugate of x – iy,
denoted by . In polar form, z = r(cos θ + i sin θ) has a conjugate of r(cos θ – i sin θ) =
r(cos(–θ) + i sin(–θ). This means the conjugate  is the same number but with the
opposite sign of its direction. Also, note that . 

 In Python, we can get the conjugate of a complex number using the following code:

z = 0.2 + 0.3j
z.conjugate()

The output is

(0.2-0.3j)

A.2.5 Combining amplitude pairs

The most basic operation of quantum computing recombines two amplitudes into two
new ones. This operation preserves the sum of the amplitudes' squared magnitudes.
The process is best explained by using two-by-two matrices of complex numbers, even
though we will not use this representation in code. We structure the pair of ampli-
tudes as a column matrix (or vector of complex numbers):

Now assume that we have a two-by-two matrix of complex numbers:

The value of the entries depends on the operation definition.
 In Python code, we can represent this matrix with nested lists:

[[a, b], [c, d]]

The new amplitude values are computed with the following formulas:
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As we see in the formulas, the values in the first row of the matrix tell us how to recom-
bine the pair of amplitudes to create the first new amplitude. The second row does
the same for the second amplitude. Another way to view the matrix is that a column
tells us how we split an amplitude. The first column in the matrix contains the factors
we use to split the first amplitude into two parts; each part goes to one of the new
amplitudes. The second column does the same for the second amplitude.

NOTE If you are familiar with the butterfly operation in the fast Fourier trans-
form (FFT) algorithm, combining pairs of amplitudes is very similar. The
quantum version of the Fourier transform is discussed in chapter 7. 

A.2.6 Amplitudes as colored bars

As we discussed, we can plot a complex number in its polar form. Each amplitude of a
quantum state will have a magnitude less than or equal to 1. This tells us we can plot
amplitudes within the unit circle. 

 Now we are going to use these properties of amplitudes to visualize them with col-
ors. We overlay the unit circle with a color wheel, as shown in figure A.11.

Do we need matrix multiplication?
The formulas we used to transform amplitudes z0 and z1 happen to also be the defi-
nition of multiplying the two-by-two matrix with the quantum state column vector:

We are not relying on matrix multiplication to understand quantum gates. Instead, we
use simple formulas in our simulation code. Standard computing data structures are
enough to express quantum computations and are usually more efficient than matrix
multiplication.

We will sometimes make connections between related concepts and their matrix
forms for readers who are familiar with advanced mathematics.

Figure A.11 Mapping an 
amplitude to a colored bar

180° 0°

270°

90°

Outcome Amplitude bar

...
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The color of the bar indicates the direction of the amplitude. Draw a bar with this
color, and set the saturation to the highest level for visibility. The length of the bar
should match the magnitude of the amplitude.

 We can use this method to visualize a quantum state using a color bar chart. The
bar can be either horizontal or vertical, depending on the context. Figure A.12 shows
a colored bar visualization of a three-qubit system’s state. The example state is the
result of applying a quantum phase estimation algorithm. We will talk about this algo-
rithm in more detail in a later chapter. 

Figure A.12 A tabular representation of the state of a three-qubit quantum 
system using colored bars

Outcome Binary Amplitude Direction Magnitude Amplitude bar

0 000 0.10 + 0.04i 20.2° 0.11

1 001 0.07 + 0.07i 42.8° 0.10

2 010 0.05 + 0.11i 65.2° 0.12

3 011 0.01 + 0.16i 87.8° 0.16

4 100 –0.13 + 0.35i 110.3° 0.37

5 101 0.58 – 0.63i –47.2° 0.86

6 110 0.19 – 0.09i –24.7° 0.21

7 111 0.13 – 0.01i –2.2° 0.13
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More about

quantum states and gates

B.1 The Bloch sphere
A qubit (and, more generally, a pair of amplitudes) can be illustrated using the
three-dimensional Bloch sphere, shown in figure B.1. In this book, we do not rely
on the Bloch sphere for visualizing single-qubit states. However, you may find it
helpful for building intuition. 

A single-qubit state with probability p = cos2 θ/2 of the outcome 0 can be written in
Ket notation as

x

y

z

ψ

φ

θ

Figure B.1 The Bloch sphere
334
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where 0 ≤ φ < 2π.
 We can get to this form by starting with a state in the general form:

Using an angle 0 ≤ θ < π such that p = cos2 θ/2, and therefore 1 – p = sin2 θ/2, we arrive
at this expression:

This is the same as the Bloch sphere representation, which ignores the factor ,
called a global phase. 

 Let’s use a Bloch sphere to visualize the example single-qubit state where the prob-
ability of outcome 0 is p = 0.35 and the directions of the amplitudes are θ0 = 60° = π/3
and θ1 = 120° = 2π/3. We can express the state with the following equation:

Referencing this equation, we know that φ = π/3 and , and therefore

. 

B.2 Building any gate from Hadamard and phase gates
All other single-qubit gates can be built from Hadamard and phase gates. In fact, most
quantum computers take advantage of this fact in one form or another. Gate identities
can also be used to simplify quantum circuits. 

B.2.1 Example: The Z gate

It is easy to see that the Z gate is the same as P(π) because changing the sign of a com-
plex number is the same as adding 180°, or π radians, to its direction. Let’s define an
example single-qubit state and simulate applying a Z gate:
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state = [0.2958+0.51235j, -0.40311+0.69821j]
state = [state[0], -state[1]]
state

[(0.2958+0.51235j), (0.40311-0.69821j)]

Now let’s use the same state and apply a phase gate with angle π:

state = [0.2958+0.51235j, -0.40311+0.69821j]
state = [state[0], cis(pi)*state[1]]
state

[(0.2958+0.51235j), (0.40311-0.69821j)]

We express this equivalence of gate applications with the identity Z = P(π). 

B.2.2 Example: The X gate

To implement the X gate, we can first use a Hadamard gate to convert a pair of ampli-
tudes into their sum and difference (divided by the square root of 2). Then we can
change the sign of the difference with a Z gate (which is the same as P(π)) and apply
another Hadamard gate to arrive at the original amplitudes, swapped. Let’s simulate
applying an X gate to an example single-qubit state:

state = [0.2958+0.51235j, -0.40311+0.69821j]
state = [state[1], state[0]]
state

[(-0.40311+0.69821j), (0.2958+0.51235j)]

Now let’s apply an H gate followed by a Z gate and then another H gate to the same
example state:

state = [0.2958+0.51235j, -0.40311+0.69821j]
state = [sqrt(0.5)*(state[0]+state[1]), sqrt(0.5)*(state[0]-state[1])]
state = [state[0], -state[1]]
state = [sqrt(0.5)*(state[0]+state[1]), sqrt(0.5)*(state[0]-state[1])]
state

[(-0.40311+0.69821j), (0.2958+0.51235j)]

We express this equivalence of gate applications with the identity X = HZH = HP(π)H.

More gate identities
We will not derive the representations of the other gates in terms of the H and P
gates, but we provide them here as a reference. You may find it useful to spend time
justifying these identities. The code base contains unit tests to verify them. Throughout
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the book, we will use code assertions on random states rather than formal proofs;
you are encouraged to justify them more rigorously. 
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Outcome pairing strategies

C.1 Additional strategies for pair selection in Python
In chapter 4, we explain one way of selecting outcome pairs. Following are two
additional methods, which may perform better depending on the context.

C.1.1 Recognizing pairs by checking the digit for the target qubit

Given a target qubit position t, we can traverse through all outcomes and select
pairs by finding the “0 side” of a pair and adding 2t to find the “1 side.” Given n
qubits, we know the decimal forms of the outcomes are 0 to 2n – 1. For each possi-
ble outcome, we check whether the target qubit in the binary form is 0 using the
is_bit_set function. If the target qubit is 0 in the binary form, we find the second
item in the pair by adding 2t.

def is_bit_set(m, k):
    return m & (1 << k) != 0

def pair_generator_check_digit(n, t):
    distance = int(2 ** t)                

    for k0 in range(2**n):                  
        if not is_bit_set(k0, t):           
            k1 = k0 + distance     
            yield k0, k1

Let’s take the example of three qubits (n = 3) and target qubit 0 (t = 0) and gener-
ate the pairs using this method:

Listing C.1 Traverse-and-check method for selecting pairs

The difference between 
pairs, or distance, is 2t.

range(2**n) iterates through 
the outcomes in decimal form.

Checks whether the target qubit 
is 0 (not 1) in the decimal form 
of the outcome

Adds the distance to get the 
second item in the pair
338
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for (k0, k1) in pair_generator_check_digit(3, 0):
    print(k0, k1)

0 1
2 3
4 5
6 7

The pairs match the highlighted rows discussed previously and shown in figure C.1.

C.1.2 Generating pairs by concatenating the prefix, target, and suffix

Given n qubits and a target qubit t, the binary string outcomes will have t digits after
the target digit and n – t – 1 digits before it. We will call the digits before the target
digit the prefix and the digits after the target digit the suffix. We can generate prefixes
and suffixes to assemble pairs.

 Each prefix will be a binary string of length n – t – 1, so there will be 2n–t–1 possible
prefixes. Each suffix will be a binary string of length t, so there will be 2t possible suf-
fixes. We can generate pairs by taking each possible prefix, appending 0 in the target
position, and then appending each possible suffix.

 For example, for four qubits (n = 4) and target qubit 1 (t), the prefix will have n – t –
1 = 2 digits. Therefore, the possible prefixes are '00', '01', '10', and '11'. The suffix will
have one digit, so the possible values are 0 and 1. For each possible prefix, we append
0 and 1 in the target position. Starting with the prefix '00', we append 0 to get the 0
side of the pair, '000', and 1 to get the 1 side of the pair, '001'. Then we append each
possible suffix. By appending the suffix 0, we get the first pair: '0000' and '0010'. And
by appending the suffix 1, we get the second pair: '0001' and '0011'. If we repeat this
process for each of the three other prefixes, we can generate all eight pairs.

Outcome Binary

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

Outcome Binary

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

Outcome Binary

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

Outcome Binary

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

Figure C.1 The pairs of outcomes for applying a single-qubit gate to a three-qubit 
system with a target qubit in position 0



340 APPENDIX C Outcome pairing strategies
 If we think about the prefix and suffix values in decimal form, appending 0 in the
target position is equivalent to multiplying the prefix value by 2 × 2t. Appending the
suffix is equivalent to adding the decimal value of the suffix. Once we have the 0 side
of the pair, we can use the distance to get the second item in the pair.

 In the code, we will use decimal values. In Python, we can use nested for loops to
generate the pairs.

def pair_generator_concatenate(n, t):
    distance = int(2 ** t)                
    suffix_count = int(2 ** t)                 
    prefix_count = int(2 ** (n - t - 1))       

    for p in range(prefix_count):      
        for s in range(suffix_count):
            k0 = p * suffix_count*2 + s
            k1 = k0 + distance
            yield k0, k1

Let’s generate all the pairs for the previous example (n = 4 and t = 1):

for (k0, k1) in pair_generator_concatenate(4, 1):
    print(k0, k1)

0 2
1 3
4 6
5 7
8 10
9 11
12 14
13 15

The generated pairs consist of outcomes that differ by 2t = 21 = 2. If we looked at the
four-digit binary form of each of these pairs, we would find that they differ only in
position 1.

Listing C.2 Generating pairs by concatenating the prefix, target, and suffix

The difference between 
pairs, or distance, is 2t.

Gets the number of digits 
in each prefix and suffix

Iterates through the 
decimal form of each 
possible prefix
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Example of applying the inverse quantum Fourier transform to a periodic quantum state to find the encoded 
frequency value. This can be seen as encoding a number (the frequency of the complex sinusoidal signal 
represented in the state). This encoding allows for efficient manipulation of numbers (e.g., quantum arithmetic, 
polynomial encoding) that will be used in applications such as optimization.

The state of a quantum system may be thought of as a “quantum matrix,” where complex numbers (represented 
as color pixels here) change with every quantum instruction.
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